Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (3): 566-576    DOI: 10.3785/j.issn.1008-973X.2025.03.014
计算机技术     
基于脉搏波信号多维度特征的身份识别
傅幼萍1(),张航2,*(),厉梦菡2,孟濬2
1. 浙江长征职业技术学院 计算机与信息技术学院,浙江 杭州 310023
2. 浙江大学 电气工程学院,浙江 杭州 310058
Identity recognition based on multi-dimensional features of pulse wave signals
Youping FU1(),Hang ZHANG2,*(),Menghan LI2,Jun MENG2
1. School of Computer and Information Technology, Zhejiang Changzheng Vocational and Technical College, Hangzhou 310023, China
2. College of Electrical Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1399 KB)   HTML
摘要:

现有光电容积脉搏波(PPG)身份识别方法特征表征不全面、鲁棒性不强,为此提出基于PPG信号多维度特征的身份识别方法. 该方法将PPG信号的非线性维度作为重要特征引入身份识别. 对PPG信号进行预处理;分别从时域、频域和非线性3个维度提取PPG信号的特征参数;通过优化和选择,构建有效的特征集;将该特征集用于身份识别,并对身份识别系统的性能进行分析和评估. 通过对多维度的全面分析,该方法实现了较全面的特征提取,并且时域、频域和非线性维度分析提供的互补信息增强了识别系统的鲁棒性. 在包含200个主体和1000条数据的身份识别任务中,该方法取得了98.4%的准确率. 与KNN之类其他现有研究的对比分析表明,本研究方法取得了较高的准确率. 结果表明,构建多维度特征对于提高PPG身份识别任务准确率至关重要.

关键词: 脉搏波身份识别特征提取数据挖掘信号分析    
Abstract:

A novel identity recognition method based on multi-dimensional features extracted from photoplethysmography (PPG) signals was proposed, addressing the limitations of existing methods in terms of incomplete feature representation and weak robustness. The non-linear dimension of PPG signals was incorporated as a crucial feature for identity recognition. After preprocessing the PPG signals were processed, and features were extracted from three distinct dimensions, i.e., time domain, frequency domain, and non-linearity. An effective feature set was then constructed through optimization and selection. Finally, this feature set was utilized for identity recognition, and the performance of the recognition system was analyzed and evaluated. By comprehensively analyzing multiple dimensions, the proposed method achieved comprehensive feature extraction. Furthermore, the complementary information provided by time domain, frequency domain, and non-linearity analysis enhanced the robustness of the recognition system. On an identity recognition task involving 200 subjects and 1000 samples, the proposed approach achieved an accuracy of 98.4%. Comparative analysis with other state-of-the-art methods, such as KNN, demonstrated the superior accuracy of the proposed approach. Results indicated the significance of constructing multi-dimensional features for enhancing the accuracy of PPG identity recognition tasks.

Key words: pulse wave    identity recognition    feature extraction    data mining    signal analysis
收稿日期: 2024-02-26 出版日期: 2025-03-10
CLC:  TP 393  
基金资助: 浙江省基础公益研究计划资助项目(LGF21F030003).
通讯作者: 张航     E-mail: lele_girl@163.com;22210156@zju.edu.cn
作者简介: 傅幼萍(1980—),女,讲师,硕士,从事智能视觉、数据挖掘研究. orcid.org/0009-0007-1405-5490. E-mail:lele_girl@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
傅幼萍
张航
厉梦菡
孟濬

引用本文:

傅幼萍,张航,厉梦菡,孟濬. 基于脉搏波信号多维度特征的身份识别[J]. 浙江大学学报(工学版), 2025, 59(3): 566-576.

Youping FU,Hang ZHANG,Menghan LI,Jun MENG. Identity recognition based on multi-dimensional features of pulse wave signals. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 566-576.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.014        https://www.zjujournals.com/eng/CN/Y2025/V59/I3/566

图 1  身份识别系统流程图
图 2  10 s的PPG信号的滤波效果
图 3  10 s的PPG信号的基线漂移去除效果
参数名称定义表达式
波峰幅值$ h $A点的幅值$ h $
上升支时间$ {t_1} $O到点A经历的时间$ {t_1} $
下降支时间$ {t_2} $A到点$ {O'} $经历的时间$ {t_2} $
全周期$ t $O到点$ {O'} $经历的时间$ {t_1}+{t_2} $
上升支斜率$ {k_{OA}} $$ OA $的斜率$ {h}/{{{t_1}}} $
下降支斜率$ {k_{{O'}A}} $$ {O'}A $的斜率$ {h}/{{{t_2}}} $
上升面积$ {S_{{{OAM}}}} $上升曲线$ OAM $包围面积$ \displaystyle\sum\nolimits_{i = 1}^{{n_0}} {{x_i}} $
下降面积$ {S_{{O'AM}}} $下降曲线$ {O'}AM $包围面积$ \displaystyle\sum\nolimits_{i = {n_0}}^n {{x_i}} $
全周期面积$ {S_{OAO'}} $PPG曲线$ OA{O'} $包围面积$ \displaystyle\sum\nolimits_{i = 1}^n {{x_i}} $
比例$ K $脉搏波压力脉动分量的均值在
脉动分量最大值中所占比例
$ \dfrac{{{P_{\text{m}}} - {P_{\text{d}}}}}{{{P_{\text{s}}} - {P_{\text{d}}}}} $
表 1  PPG信号的时域特征参数名称、定义及表达式
图 4  时域特征参数图
参数名称FD/Hz参数名称FD/Hz
power_10~0.02power_50.13~0.16
power_20.02~0.05power_60.16~0.30
power_30.05~0.09power_70.30~1.00
power_40.09~0.13power_all0~1.00
表 2  PPG信号的频域特征参数名称及其含义
图 5  基于10 s的PPG信号的标准化功率谱
图 6  参数取值对特征选择结果的影响
序号特征参数序号特征参数
1FuzzyEn10$ {S_{OAO'}} $
2RCMDE11power_all
3$ {k_{O'A}} $12power_7
4PermEn13$ {S_{OAM}} $
5power_114SampleEn
6power_515K
7power_416$ {k_{OA}} $
8power_617t1
9h18power_2
表 3  根据特征选择结果构建的有效特征集
模型A/%SS/(obs·s?1)Tinfer/sS/kB
DT40.0~140005.16573
KNN96.0~130000.63517
Linear SVM94.0~151084.5089547
QuadraticSVM94.8~121114.60137104
Cubic SVM94.8~121120.50131862
Gaussian SVM97.6~111101.50159960
LDA98.4~120000.861048
表 4  身份识别的不同模型
图 7  不同邻居个数下KNN分类模型的准确率
核函数k1k2A/%SS(obs·s?1)
Linear2.596.8~14
Quadratic2.095.6~11
Cubic2.095.2~11
Gaussian2.06.598.0~11
表 5  SVM模型参数优化结果
图 8  参数优化前后SVM分类模型的准确率
图 9  不同维度特征集的分类准确率
文献年份M(PPG数据)特征提取分类器A/%
注:1) FAR为假接受率;2) FRR为假拒绝率.
文献[30]200317时域KNN94.0
文献[9]200317时域模糊逻辑94.0
文献[5]201440时域KNN94.4
文献[6]201510时域贝叶斯网络97.5
文献[31]201510(708组)时域FNNFAR:4.21)
FRR:3.72)
文献[7]201615时域LDA100.0
文献[10]201623高斯参数LDA95.7
文献[32]201742小波变换KNN99.8
文献[15]201742小波变换SVM100.0
文献[33]202020时域+频域SVM93.1
文献[34]2021100CNN+LSTM98.0
文献[35]202135频域CNN99.4
文献[12]2022100时域+频域+小波变换CNNLSTM98.3
文献[11]202350MsNRPNet92.0
本研究25(125组)时域+频域+非线性特征LDA100.0
50(250组)99.9
200(1000组)98.4
表 6  本研究PPG身份识别方法与相关研究的比较
8 SUN Bin, XUE Yunan, CHEN Xiaohui A method for PPG signal identification based on improved neighborhood rough set[J]. Foreign Electronic Measurement Technology, 2022, 41 (6): 8- 13
9 GU Y Y, ZHANG Y T. Photoplethysmographic authentication through fuzzy logic [C]// IEEE EMBS Asian-Pacific Conference on Biomedical Engineering . Kyoto: IEEE, 2003: 136–137.
10 SALANKE N S G R, MAHESWARI N, SAMRAJ A, et al. Enhancement in the design of biometric identification system based on photoplethysmography data [C]// International Conference on Green High Performance Computing . Nagercoil: IEEE, 2013: 1–6.
11 JEON Y J, KANG S J Multi-slice nested recurrence plot (msnrp): a robust approach for person identification using daily ECG or PPG signals[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106799
doi: 10.1016/j.engappai.2023.106799
12 LEE J A, KWAK K C Personal identification using an ensemble approach of 1D-LSTM and 2D-CNN with electrocardiogram signals[J]. Applied Sciences, 2022, 12 (5): 2692
doi: 10.3390/app12052692
13 ELGENDI M On the analysis of fingertip photoplethysmogram signals[J]. Current cardiology reviews, 2012, 8 (1): 14- 25
doi: 10.2174/157340312801215782
14 HAYES M J, SMITH P R A new method for pulse oximetry possessing inherent insensitivity toartifact[J]. IEEE Transactions on Biomedical Engineering, 2001, 48 (4): 452- 461
doi: 10.1109/10.915711
15 KARIMIAN N, GUO Z, TEHRANIPOOR M, et al. Human recognition from photoplethysmography (PPG) based on non-fiducial features [C]// IEEE International Conference on Acoustics, Speech and Signal Processing . New Orleans: IEEE, 2017: 4636–4640.
16 ALAM R-U, ZHAO H, GOODWIN A, et al Differences in power spectral densities and phase quantities due to processing of EEG signals[J]. Sensors, 2020, 20: 6285
doi: 10.3390/s20216285
17 HU J F. Biometric system based on EEG signals: a nonlinear model approach [C]// International Conference on Machine Vision and Human-machine Interface . Kaifeng: IEEE, 2010: 48–51.
18 HEJAZI M, AL-HADDAD S A R, HASHIM S J, et al. Non-fiducial based ECG biometric authentication using one-class Support Vector Machine [C]// Signal Processing: Algorithms, Architectures, Arrangements, and Applications . Poznan: IEEE, 2017: 190–194.
19 YE Z, TURNER R. Intelligent linear and nonlinear analysis for biometric fingerprint recognition [C]// 39th Southeastern Symposium on System Theory . Macon: IEEE, 2007: 315–319.
1 RAJARAM S, VOLLALA S, RAMASUBRAMANIAN N, et al Enhanced and secured random number generation for eUASBP[J]. International Journal of System Assurance Engineering and Management, 2022, 13 (3): 1135- 1150
2 SPOOREN J, PREUVENEERS D, JOOSEN W. PPG2Live: using dual PPG for active authentication and liveness detection [C]// International Conference on Biometrics . Crete: IEEE, 2019: 1–6.
20 LEE T K M, SANEI S, CLARKE B. Fusion of nonlinear measures in fronto-normal gait recognition [C]// 5th International Multi-conference on Computing in the Global Information Technology . Valencia: IEEE, 2010: 104–109.
21 PINCUS S M Approximate entropy as a measure of system complexity[J]. Proceedings of the National Academy of Sciences, 1991, 88 (6): 2297- 2301
doi: 10.1073/pnas.88.6.2297
3 NOWARA E M, SABHARWAL A, VEERARAGHAVAN A, et al. PPG secure: biometric presentation attack detection using photopletysmograms [C]// IEEE International Conference on Automatic Face and Gesture Recognition . Washington, DC: IEEE, 2017: 56–62.
4 GU Y Y, ZHANG Y, ZHANG Y T. A novel biometric approach in human verification by photoplethysmographic signals [C]// 4th International IEEE EMBS Special Topic Conference on Information Technology Applications in Biomedicine . Birmingham: IEEE, 2003: 13–14.
22 章思佳, 林栋, 齐诗仪, 等 基于眼电信号近似熵探讨针灸治神的临床应用[J]. 中国针灸, 2023, 43 (1): 79- 82
ZHANG Sijia, LIN Dong, QI Shiyi, et al Clinical application of acupuncture-moxibustion for the treatment of spirit based on approximate entropy of electrooculogram signal[J]. Chinese Acupuncture and Moxibustion, 2023, 43 (1): 79- 82
23 樊凤杰, 白洋, 纪会芳 基于脑电非线性动力学特征探究TEAS内关穴对焦虑的影响[J]. 计量学报, 2022, 43 (1): 133- 139
FAN Fengjie, BAI Yang, JI Huifang Explore the lnfluence of transcutaneous electrical acupoint stimulation neiguan point on anxiety based on electroencephalogram nonlinear dynamic analysis method[J]. Acta Metrologica Sinica, 2022, 43 (1): 133- 139
doi: 10.3969/j.issn.1000-1158.2022.01.21
5 KAVSAOGLU A R, POLAT K, BOZKURT M R A novel feature ranking algorithm for biometric recognition with PPG signals[J]. Computers in Biology and Medicine, 2014, 49: 1- 14
doi: 10.1016/j.compbiomed.2014.03.005
6 JAAFAR N A L, SIDEK K A, AZAM S N A M. Acceleration plethysmogram based biometric identification [C]// International Conference on BioSignal Analysis, Processing and Systems . Kuala Lumpur: IEEE, 2015: 16–21.
7 CHAKRABORTY S, PAL S. Photoplethysmogram signal based biometric recognition using linear discriminant classifier [C]// International Conference on Control, Instrumentation, Energy and Communication . Kolkata: IEEE, 2016: 183–187.
8 孙斌, 薛毓楠, 陈小惠 基于改进邻域粗糙集的 PPG 信号身份识别方法[J]. 国外电子测量技术, 2022, 41 (6): 8- 13
24 RICHMAN J S, MOORMAN J R Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278 (6): H2039- H2049
doi: 10.1152/ajpheart.2000.278.6.H2039
25 CHEN W, WANG Z, XIE H, et al Characterization of surface EMG signal based on fuzzy entropy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15 (2): 266- 272
doi: 10.1109/TNSRE.2007.897025
26 AZAMI H, ROSTAGHI M, ABÁSOLO D, et al Refined composite multiscale dispersion entropy and its application to biomedical signals[J]. IEEE Transactions on Biomedical Engineering, 2017, 64 (12): 2872- 2879
doi: 10.1109/TBME.2017.2679136
27 郭秀花. 医学统计学与SPSS软件实现方法(第2版)[M]. 北京: 科学出版社, 2017: 33–47.
28 徐慧, 付迎春, 付朝川, 等 改进WOA算法优化SVM的网络入侵检测[J]. 实验室研究与探索, 2019, 38 (8): 128- 133
XU Hui, FU Yingchun, FU Chaochuan, et al Improved whale optimization algorithm to optimize support vector machine for network intrusion detection[J]. Research and Exploration in Laboratory, 2019, 38 (8): 128- 133
doi: 10.3969/j.issn.1006-7167.2019.08.031
29 MOODY G B, MARK R G. A database to support development and evaluation of intelligent intensive care monitoring [C]// Computers in Cardiology . Indianapolis: IEEE, 1996: 657–660.
30 GU Y Y, ZHANG Y, ZHANG Y T. A novel biometric approach in human verification by photoplethysmo-signals [C]// 4th International IEEE EMBS Special Topic Conference on Information Technology Applications in Biomedicine . Birmingham: IEEE, 2003: 13–14.
31 LEE A, KIM Y. Photoplethysmography as a form of biometric authentication [C]// 2015 IEEE Sensors . Busan: IEEE, 2015: 1–2.
32 KARIMIAN N, TEHRANIPOOR M, FORTE D. Non-fiducial PPG-based authentication for healthcare application [C]// IEEE EMBS International Conference on Biomedical and Health Informatics . Orlando: IEEE, 2017: 429–432.
33 KHAN M U, AZIZ S, NAQVI S Z H, et al. Pattern analysis towards human verification using photoplethysmograph signals [C]// International Conference on Emerging Trends in Smart Technologies . Karachi: IEEE, 2020: 1–6.
34 HWANG D Y, TAHA B, LEE D S, et al Evaluation of the time stability and uniqueness in PPG-based biometric system[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 116- 130
doi: 10.1109/TIFS.2020.3006313
[1] 梁礼明,龙鹏威,金家新,李仁杰,曾璐. 基于改进YOLOv8s的钢材表面缺陷检测算法[J]. 浙江大学学报(工学版), 2025, 59(3): 512-522.
[2] 林俊杰,朱雅光,刘春潮,刘昊洋. 面向移动作业的腿足机器人数字孪生系统[J]. 浙江大学学报(工学版), 2024, 58(9): 1956-1969.
[3] 王海军,王涛,俞慈君. 基于递归量化分析的CFRP超声检测缺陷识别方法[J]. 浙江大学学报(工学版), 2024, 58(8): 1604-1617.
[4] 韩康,战洪飞,余军合,王瑞. 基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断[J]. 浙江大学学报(工学版), 2024, 58(6): 1285-1295.
[5] 钟博,王鹏飞,王乙乔,王晓玲. 基于深度学习的EEG数据分析技术综述[J]. 浙江大学学报(工学版), 2024, 58(5): 879-890.
[6] 刘宇情,王丽珍,杨培忠,朴丽莎. 基于网格空间团的多级同位模式挖掘方法[J]. 浙江大学学报(工学版), 2024, 58(5): 918-930.
[7] 罗钒睿,刘振宇,任佳辉,李笑宇,程阳. 基于改进卡尔曼滤波的轻量级激光惯性里程计[J]. 浙江大学学报(工学版), 2024, 58(11): 2280-2289.
[8] 李安腾,崔鹏杰,袁野,王国仁. 基于GPU的子图匹配优化技术[J]. 浙江大学学报(工学版), 2023, 57(9): 1856-1864.
[9] 莫建文,李晋,蔡晓东,陈锦威. 基于门控特征融合与中心损失的目标识别[J]. 浙江大学学报(工学版), 2023, 57(10): 2011-2017.
[10] 蒋林,刘林锐,周安娜,韩璐,李平原. 基于运动预测的改进ORB-SLAM算法[J]. 浙江大学学报(工学版), 2023, 57(1): 170-177.
[11] 李根,翟伟,邬岚. 基于梯度提升决策树的汇合交互作用研究[J]. 浙江大学学报(工学版), 2022, 56(4): 649-655.
[12] 卞艳,宫雨生,马国鹏,王昶. 基于无人机遥感影像的水体提取方法[J]. 浙江大学学报(工学版), 2022, 56(4): 764-774.
[13] 陈玉,戴华,李博涵,杨庚. 面向移动对象的松散型传染模式挖掘方法[J]. 浙江大学学报(工学版), 2022, 56(2): 280-287.
[14] 徐泽鑫,段立娟,王文健,恩擎. 基于上下文特征融合的代码漏洞检测方法[J]. 浙江大学学报(工学版), 2022, 56(11): 2260-2270.
[15] 刘芳,汪震,刘睿迪,王锴. 基于组合损失函数的BP神经网络风力发电短期预测方法[J]. 浙江大学学报(工学版), 2021, 55(3): 594-600.