计算机技术、控制工程 |
|
|
|
|
基于改进卡尔曼滤波的轻量级激光惯性里程计 |
罗钒睿1( ),刘振宇1,*( ),任佳辉2,李笑宇1,程阳1 |
1. 沈阳工业大学 信息科学与工程学院,辽宁 沈阳 310058 2. 辽宁工业大学 软件学院,辽宁 锦州 310058 |
|
Lightweight LiDAR-IMU odometry based on improved Kalman filter |
Fanrui LUO1( ),Zhenyu LIU1,*( ),Jiahui REN2,Xiaoyu LI1,Yang CHENG1 |
1. School of Information Science and Engineering, Shenyang University of Technology, Shenyang 310058, China 2. School of Software, Liaoning University of Technology, Jinzhou 310058, China |
引用本文:
罗钒睿,刘振宇,任佳辉,李笑宇,程阳. 基于改进卡尔曼滤波的轻量级激光惯性里程计[J]. 浙江大学学报(工学版), 2024, 58(11): 2280-2289.
Fanrui LUO,Zhenyu LIU,Jiahui REN,Xiaoyu LI,Yang CHENG. Lightweight LiDAR-IMU odometry based on improved Kalman filter. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2280-2289.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.11.009
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I11/2280
|
1 |
MORENO L, GARRIDO S, BLANCO D, et al Differential evolution solution to the SLAM problem[J]. Robotics and Autonomous Systems, 2009, 57 (4): 441- 450
doi: 10.1016/j.robot.2008.05.005
|
2 |
KHAN M U, ZAIDI S A A, ISHTIAQ A, et al. A comparative survey of lidar-slam and lidar based sensor technologies [C] // Mohammad Ali Jinnah University International Conference on Computing. Karachi: IEEE, 2021: 1-8.
|
3 |
HUANG L. Review on LiDAR-based SLAM techniques [C] // International Conference on Signal Processing and Machine Learning. Stanford: IEEE, 2021: 163-168.
|
4 |
赵洋, 刘国良, 田国会, 等 基于深度学习的视觉SLAM综述[J]. 机器人, 2017, 39 (6): 889- 896 ZHAO Yang, LIU Guoliang, TIAN Guohui, et al A survey of visual SLAM based on deep learning[J]. Robot, 2017, 39 (6): 889- 896
|
5 |
蒋林, 刘林锐, 周安娜, 等 基于运动预测的改进ORB-SLAM算法[J]. 浙江大学学报: 工学版, 2023, 57 (1): 170- 177 JIANG Lin, LIU Linrui, ZHOU Anna, et al Improved ORB-SLAM algorithm based on motion prediction[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (1): 170- 177
|
6 |
李帅鑫, 李广云, 王力, 等 LiDAR/IMU紧耦合的实时定位方法[J]. 自动化学报, 2021, 47 (6): 1377- 1389 LI Shuaixin, LI Guangyun, WANG Li, et al LiDAR/IMU tightly coupled real-time localization method[J]. Acta Automatica Sinica, 2021, 47 (6): 1377- 1389
|
7 |
BESL P J, MCKAY N D A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (2): 239- 256
doi: 10.1109/34.121791
|
8 |
CHEN Yang, MEDIONI G Object modelling by registration of multiple range images[J]. Image and Vision Computing, 1992, 10 (3): 145- 155
doi: 10.1016/0262-8856(92)90066-C
|
9 |
LOW K L Linear least-squares optimization for point-to-plane ICP surface registration[J]. Chapel Hill, University of North Carolina, 2004, 4 (10): 1- 3
|
10 |
SEGAL A, HAEHNEL D, THRUN S. Generalized-ICP [C] // Robotics: Science and Systems. Seattle: MIT Press, 2009: 435.
|
11 |
ZHANG Ji, SINGH S. LOAM: lidar odometry and mapping in real-time [C] // Robotics: Science and Systems. Berkeley: RSS, 2014, 2(9): 1-9.
|
12 |
LIN Jiarong, ZHANG Fu. Loam livox: a fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV [C] // IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 3126-3131.
|
13 |
SHAN Tixiao, ENGLOT B. Lego-loam: lightweight and ground-optimized lidar odometry and mapping on variable terrain [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems . Madrid: IEEE, 2018: 4758-4765.
|
14 |
WANG Han, WANG Chen, CHEN Chunlin, et al. F-loam: fast lidar odometry and mapping [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague: IEEE, 2021: 4390-4396.
|
15 |
JIAO Jianhao, YE Haoyang, ZHU Yilong, et al Robust odometry and mapping for multi-lidar systems with online extrinsic calibration[J]. IEEE Transactions on Robotics, 2021, 38 (1): 351- 371
|
16 |
YE Haoyang, CHEN Yuying, LIU Meng. Tightly coupled 3d lidar inertial odometry and mapping [C] // International Conference on Robotics and Automation. Montreal: IEEE, 2019: 3144-3150.
|
17 |
SHAN Tixiao, ENGLOT B, MEYERS D, et al. Lio-sam: tightly-coupled lidar inertial odometry via smoothing and mapping [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2020: 5135-5142.
|
18 |
QIN Chao, YE Haoyang, PRANATA C E, et al. Lins: a lidar-inertial state estimator for robust and efficient navigation [C] // IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 8899-8906.
|
19 |
LV Jiajun, HU Kewei, XU Jinhang, et al. Clins: continuous-time trajectory estimation for LiDAR-inertial system [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague: IEEE, 2021: 6657-6663.
|
20 |
XU Wei, ZHANG Fu Fast-LIO: a fast, robust lidar-inertial odometry package by tightly-coupled iterated Kalman filter[J]. IEEE Robotics and Automation Letters, 2021, 6 (2): 3317- 3324
doi: 10.1109/LRA.2021.3064227
|
21 |
XU Wei, CAI Yixi, HE Dongjiao, et al Fast-lio2: fast direct lidar-inertial odometry[J]. IEEE Transactions on Robotics, 2022, 38 (4): 2053- 2073
doi: 10.1109/TRO.2022.3141876
|
22 |
BAI Chunge, XIAO Tao, CHEN Yajie, et al Faster-LIO: lightweight tightly coupled LiDAR-inertial odometry using parallel sparse incremental voxels[J]. IEEE Robotics and Automation Letters, 2022, 7 (2): 4861- 4868
doi: 10.1109/LRA.2022.3152830
|
23 |
罗欣, 丁晓军 地面移动作业机器人运动规划与控制研究综述[J]. 哈尔滨工业大学学报, 2021, 53 (1): 1- 15 LUO Xin, DING Xiaojun Research and prospective on motion planning and control of ground mobile manipulators[J]. Journal of Harbin Institute of Technology, 2021, 53 (1): 1- 15
|
24 |
朱大奇, 颜明重 移动机器人路径规划技术综述[J]. 控制与决策, 2010, 25 (7): 961- 967 ZHU Daqi, YAN Mingzhong Survey on technology of mobile robot path planning[J]. Control and Decision, 2010, 25 (7): 961- 967
|
25 |
GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the kitti vision benchmark suite [C] // IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 3354-3361.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|