Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (11): 2280-2289    DOI: 10.3785/j.issn.1008-973X.2024.11.009
计算机技术、控制工程     
基于改进卡尔曼滤波的轻量级激光惯性里程计
罗钒睿1(),刘振宇1,*(),任佳辉2,李笑宇1,程阳1
1. 沈阳工业大学 信息科学与工程学院,辽宁 沈阳 310058
2. 辽宁工业大学 软件学院,辽宁 锦州 310058
Lightweight LiDAR-IMU odometry based on improved Kalman filter
Fanrui LUO1(),Zhenyu LIU1,*(),Jiahui REN2,Xiaoyu LI1,Yang CHENG1
1. School of Information Science and Engineering, Shenyang University of Technology, Shenyang 310058, China
2. School of Software, Liaoning University of Technology, Jinzhou 310058, China
 全文: PDF(3832 KB)   HTML
摘要:

针对移动机器人长期的实时定位和运行的稳定性较差的问题,在激光里程计FAST-LIO2的基础上,提出LCG-LIO,其较FAST-LIO2具有更少的计算量和更高的定位精度. 相较于FAST -LIO2,LCG-LIO前端加入了提出的双向降维曲率滤波的高质量平面与地面点云提取和分割的方法,通过点云伪占用的方法,平衡了平面和地面点的数量. 在后端优化中,改进了卡尔曼滤波的观测误差方程和观测误差雅可比矩阵的构建方法,在观测误差方程中加入了GPS 约束,通过伪轨迹加权的方法,纠正了里程计的累计漂移. 通过KITTI数据集和自己采集的数据集,对提出的方法进行实验. 结果表明,提出方法的精度和效率较FAST-LIO2提高了55.13%和53.01%,提出的GPS信息融合方法较LIO-SAM中的因子图优化方法具有更高的可行性.

关键词: 激光惯性里程计特征提取改进的卡尔曼滤波GPS约束    
Abstract:

LCG-LIO was proposed based on the FAST-LIO2 aiming at the problem of real-time localization and running poor stability of mobile robot. LCG-LIO exhibited lower computational complexity and increased localization accuracy compared with FAST-LIO2. The LCG-LIO frontend incorporated a method for extracting and segmenting high-quality plane and ground points by using the proposed bidirectional dimensionality reduction curvature filter in contrast to FAST-LIO2. LCG-LIO balances the number of plane and ground points through the pseudo occupancy of point clouds. Improvements were made to the observation error equations and the construction of its Jacobian matrix for the Kalman filter in the backend optimization. The GPS constraint was incorporated to the observation error equation by pseudo-trajectory weighting method, and cumulative odometry drift was corrected. Experimental validation was performed by using the KITTI dataset and self-collected datasets. Results showed that the accuracy and efficiency of the proposed method were improved by 55.13% and 53.01% compared with FAST-LIO2. The proposed method for integrating GPS has higher feasibility than the factor graph optimization in LIO-SAM.

Key words: LiDAR-IMU odometry    feature extraction    improved Kalman filtering    GPS constraint
收稿日期: 2023-08-28 出版日期: 2024-10-23
CLC:  TP 393  
基金资助: 辽宁省应用基础研究计划资助项目(2023JH2/101300225).
通讯作者: 刘振宇     E-mail: 2354971839@qq.com;liuzhenyu@sut.edu.cn
作者简介: 罗钒睿(1999—),男,硕士生,从事激光SLAM的研究. orcid.org/0009-0005-3257-5882. E-mail:2354971839@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
罗钒睿
刘振宇
任佳辉
李笑宇
程阳

引用本文:

罗钒睿,刘振宇,任佳辉,李笑宇,程阳. 基于改进卡尔曼滤波的轻量级激光惯性里程计[J]. 浙江大学学报(工学版), 2024, 58(11): 2280-2289.

Fanrui LUO,Zhenyu LIU,Jiahui REN,Xiaoyu LI,Yang CHENG. Lightweight LiDAR-IMU odometry based on improved Kalman filter. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2280-2289.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.11.009        https://www.zjujournals.com/eng/CN/Y2024/V58/I11/2280

图 1  LCG-LIO系统的总体框架图
图 2  双向降维曲率滤波的示意图
图 3  特征提取结果图
图 4  GPS约束和伪轨迹加权的示意图
图 5  KITTI运行结果图
图 6  KITTI运行轨迹图
图 7  KITTI运行局部细节轨迹
里程计算法$ {\partial _{\max}} $$ {\partial _{{\mathrm{mean}}}} $$ {\partial _{{\mathrm{median}}}} $$ {\partial _{{\mathrm{min}}}} $$ {\partial _{{\mathrm{rmse}}}} $
FAST-LIO236.13118.36918.2392.54120.417
LCG-LIO不添加GPS25.84810.4689.7122.54811.264
LCG-LIO23.7569.9398.5893.2099.162
表 1  KITTI运行的绝对位姿误差
图 8  自采数据集的运行结果图
里程计算法$ \Delta x $$ \Delta y $$ \Delta z $总体回环误差
LIO-SAM0.1200.2410.8800.920
LCG-LIO0.0400.0330.0030.052
表 2  自己采集的数据集运行回环误差
方法Npt1/mst2/mst/ms
FAST-LIO230156030.01230.012
LCG-LIO不添加GPS约束52125.7638.03213.795
LCG-LIO52125.7638.34314.106
表 3  各模块的平均时间消耗
1 MORENO L, GARRIDO S, BLANCO D, et al Differential evolution solution to the SLAM problem[J]. Robotics and Autonomous Systems, 2009, 57 (4): 441- 450
doi: 10.1016/j.robot.2008.05.005
2 KHAN M U, ZAIDI S A A, ISHTIAQ A, et al. A comparative survey of lidar-slam and lidar based sensor technologies [C] // Mohammad Ali Jinnah University International Conference on Computing. Karachi: IEEE, 2021: 1-8.
3 HUANG L. Review on LiDAR-based SLAM techniques [C] // International Conference on Signal Processing and Machine Learning. Stanford: IEEE, 2021: 163-168.
4 赵洋, 刘国良, 田国会, 等 基于深度学习的视觉SLAM综述[J]. 机器人, 2017, 39 (6): 889- 896
ZHAO Yang, LIU Guoliang, TIAN Guohui, et al A survey of visual SLAM based on deep learning[J]. Robot, 2017, 39 (6): 889- 896
5 蒋林, 刘林锐, 周安娜, 等 基于运动预测的改进ORB-SLAM算法[J]. 浙江大学学报: 工学版, 2023, 57 (1): 170- 177
JIANG Lin, LIU Linrui, ZHOU Anna, et al Improved ORB-SLAM algorithm based on motion prediction[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (1): 170- 177
6 李帅鑫, 李广云, 王力, 等 LiDAR/IMU紧耦合的实时定位方法[J]. 自动化学报, 2021, 47 (6): 1377- 1389
LI Shuaixin, LI Guangyun, WANG Li, et al LiDAR/IMU tightly coupled real-time localization method[J]. Acta Automatica Sinica, 2021, 47 (6): 1377- 1389
7 BESL P J, MCKAY N D A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (2): 239- 256
doi: 10.1109/34.121791
8 CHEN Yang, MEDIONI G Object modelling by registration of multiple range images[J]. Image and Vision Computing, 1992, 10 (3): 145- 155
doi: 10.1016/0262-8856(92)90066-C
9 LOW K L Linear least-squares optimization for point-to-plane ICP surface registration[J]. Chapel Hill, University of North Carolina, 2004, 4 (10): 1- 3
10 SEGAL A, HAEHNEL D, THRUN S. Generalized-ICP [C] // Robotics: Science and Systems. Seattle: MIT Press, 2009: 435.
11 ZHANG Ji, SINGH S. LOAM: lidar odometry and mapping in real-time [C] // Robotics: Science and Systems. Berkeley: RSS, 2014, 2(9): 1-9.
12 LIN Jiarong, ZHANG Fu. Loam livox: a fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV [C] // IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 3126-3131.
13 SHAN Tixiao, ENGLOT B. Lego-loam: lightweight and ground-optimized lidar odometry and mapping on variable terrain [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems . Madrid: IEEE, 2018: 4758-4765.
14 WANG Han, WANG Chen, CHEN Chunlin, et al. F-loam: fast lidar odometry and mapping [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague: IEEE, 2021: 4390-4396.
15 JIAO Jianhao, YE Haoyang, ZHU Yilong, et al Robust odometry and mapping for multi-lidar systems with online extrinsic calibration[J]. IEEE Transactions on Robotics, 2021, 38 (1): 351- 371
16 YE Haoyang, CHEN Yuying, LIU Meng. Tightly coupled 3d lidar inertial odometry and mapping [C] // International Conference on Robotics and Automation. Montreal: IEEE, 2019: 3144-3150.
17 SHAN Tixiao, ENGLOT B, MEYERS D, et al. Lio-sam: tightly-coupled lidar inertial odometry via smoothing and mapping [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2020: 5135-5142.
18 QIN Chao, YE Haoyang, PRANATA C E, et al. Lins: a lidar-inertial state estimator for robust and efficient navigation [C] // IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 8899-8906.
19 LV Jiajun, HU Kewei, XU Jinhang, et al. Clins: continuous-time trajectory estimation for LiDAR-inertial system [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague: IEEE, 2021: 6657-6663.
20 XU Wei, ZHANG Fu Fast-LIO: a fast, robust lidar-inertial odometry package by tightly-coupled iterated Kalman filter[J]. IEEE Robotics and Automation Letters, 2021, 6 (2): 3317- 3324
doi: 10.1109/LRA.2021.3064227
21 XU Wei, CAI Yixi, HE Dongjiao, et al Fast-lio2: fast direct lidar-inertial odometry[J]. IEEE Transactions on Robotics, 2022, 38 (4): 2053- 2073
doi: 10.1109/TRO.2022.3141876
22 BAI Chunge, XIAO Tao, CHEN Yajie, et al Faster-LIO: lightweight tightly coupled LiDAR-inertial odometry using parallel sparse incremental voxels[J]. IEEE Robotics and Automation Letters, 2022, 7 (2): 4861- 4868
doi: 10.1109/LRA.2022.3152830
23 罗欣, 丁晓军 地面移动作业机器人运动规划与控制研究综述[J]. 哈尔滨工业大学学报, 2021, 53 (1): 1- 15
LUO Xin, DING Xiaojun Research and prospective on motion planning and control of ground mobile manipulators[J]. Journal of Harbin Institute of Technology, 2021, 53 (1): 1- 15
24 朱大奇, 颜明重 移动机器人路径规划技术综述[J]. 控制与决策, 2010, 25 (7): 961- 967
ZHU Daqi, YAN Mingzhong Survey on technology of mobile robot path planning[J]. Control and Decision, 2010, 25 (7): 961- 967
25 GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the kitti vision benchmark suite [C] // IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 3354-3361.
[1] 林俊杰,朱雅光,刘春潮,刘昊洋. 面向移动作业的腿足机器人数字孪生系统[J]. 浙江大学学报(工学版), 2024, 58(9): 1956-1969.
[2] 王海军,王涛,俞慈君. 基于递归量化分析的CFRP超声检测缺陷识别方法[J]. 浙江大学学报(工学版), 2024, 58(8): 1604-1617.
[3] 韩康,战洪飞,余军合,王瑞. 基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断[J]. 浙江大学学报(工学版), 2024, 58(6): 1285-1295.
[4] 钟博,王鹏飞,王乙乔,王晓玲. 基于深度学习的EEG数据分析技术综述[J]. 浙江大学学报(工学版), 2024, 58(5): 879-890.
[5] 蒋林,刘林锐,周安娜,韩璐,李平原. 基于运动预测的改进ORB-SLAM算法[J]. 浙江大学学报(工学版), 2023, 57(1): 170-177.
[6] 卞艳,宫雨生,马国鹏,王昶. 基于无人机遥感影像的水体提取方法[J]. 浙江大学学报(工学版), 2022, 56(4): 764-774.
[7] 徐泽鑫,段立娟,王文健,恩擎. 基于上下文特征融合的代码漏洞检测方法[J]. 浙江大学学报(工学版), 2022, 56(11): 2260-2270.
[8] 刘芳,汪震,刘睿迪,王锴. 基于组合损失函数的BP神经网络风力发电短期预测方法[J]. 浙江大学学报(工学版), 2021, 55(3): 594-600.
[9] 冯毅雄,李康杰,高一聪,郑浩,谭建荣. 基于特征与形貌重构的轴件表面缺陷检测方法[J]. 浙江大学学报(工学版), 2020, 54(3): 427-434.
[10] 乔美英,汤夏夏,闫书豪,史建柯. 基于改进稀疏滤波与深度网络融合的轴承故障诊断[J]. 浙江大学学报(工学版), 2020, 54(12): 2301-2309.
[11] 赵小虎,尹良飞,赵成龙. 基于全局?局部特征和自适应注意力机制的图像语义描述算法[J]. 浙江大学学报(工学版), 2020, 54(1): 126-134.
[12] 赫贵然,李奇,冯华君,徐之海,陈跃庭. 基于CNN特征提取的双焦相机连续数字变焦[J]. 浙江大学学报(工学版), 2019, 53(6): 1182-1189.
[13] 董月,冯华君,徐之海,陈跃庭,李奇. Attention Res-Unet: 一种高效阴影检测算法[J]. 浙江大学学报(工学版), 2019, 53(2): 373-381.
[14] 赵祥龙,陈捷,洪荣晶,王华,李媛媛. 基于Wavelet leader和优化的等距映射算法的回转支承自适应特征提取[J]. 浙江大学学报(工学版), 2019, 53(11): 2092-2101.
[15] 童水光, 张依东, 徐剑, 从飞云. 频带多尺度复合模糊熵及其在轴承故障诊断中的应用[J]. 浙江大学学报(工学版), 2018, 52(8): 1509-1516.