计算机技术 |
|
|
|
|
基于GPU的子图匹配优化技术 |
李安腾1( ),崔鹏杰2,袁野1,*( ),王国仁1 |
1. 北京理工大学 计算机学院,北京 100081 2. 东北大学 计算机科学与工程学院,辽宁 沈阳 110169 |
|
Research on subgraph matching optimization based on GPU |
An-teng LI1( ),Peng-jie CUI2,Ye YUAN1,*( ),Guo-ren WANG1 |
1. School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China 2. School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China |
引用本文:
李安腾,崔鹏杰,袁野,王国仁. 基于GPU的子图匹配优化技术[J]. 浙江大学学报(工学版), 2023, 57(9): 1856-1864.
An-teng LI,Peng-jie CUI,Ye YUAN,Guo-ren WANG. Research on subgraph matching optimization based on GPU. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1856-1864.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.09.017
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I9/1856
|
1 |
WANG J, CHENG J. Truss decomposition in massive networks [C]// proceedings of the VLDB Endowment. [S.l.]: VLDB Endowment, 2012, 5(9): 812–823.
|
2 |
KAIRAM S R, WANG D J, LESKOVEC J. The life and death of online groups: predicting group growth and longevity [C]// Proceedings of the Fifth ACM International Conference on Web Search and Data Mining. [S.l.]: ACM, 2012: 673–682.
|
3 |
PÉREZ J, ARENAS M, GUTIERREZ C. Semantics and complexity of sparql [C]// ACM Transactions on Database Systems, 2009, 16: 1-45.
|
4 |
CHRISTOPHIDES V. Resource description framework (RDF) schema (RDFS) [M]// LIU L, ÖZSU M T. Encyclopedia of database systems. Boston: Springer, 2009: 2425-2428.
|
5 |
ZENG L, ZOU L Redesign of the gstore system[J]. Frontiers Computer Science, 2018, 12: 623- 641
doi: 10.1007/s11704-018-7212-z
|
6 |
YAN X F, YU P S, HAN J W. Graph indexing: a frequent structure-based approach [C]// Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. [S.l.]: ACM, 2004: 335-346.
|
7 |
LIU H B, BLOUIN C, KEŠELJ V. Biological event extraction using subgraph matching [EB/OL]. [2022-06-01]. https://ceur-ws.org/Vol-714/ShortPaper03_Liu.pdf.
|
8 |
GAREY M R, JOHNSON D S. Computers and intractability: a guide to the theory of NP-completeness [M]. [S.l.]: W. H. Freeman and Company, 1979.
|
9 |
CONTE D, FOGGIA P, SANSONE C, et al Thirty years of graph matching in pattern recognition[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2004, 18 (3): 265- 298
doi: 10.1142/S0218001404003228
|
10 |
LIN H, ZHU X W, YU B W, et al. ShenTu: processing multi-trillion edge graphs on millions of cores in seconds [C]// SC18: International Conference for High Performance Computing, Networking, Storage and Analysis. Dallas: IEEE, 2018: 706-716.
|
11 |
MENG K, LI J J, TAN G M, et al. A pattern based algorithmic autotuner for graph processing on GPUs [C]// Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming. [S.l.]: ACM, 2019: 201-213.
|
12 |
KHORASANI F, VORA K, GUPTA R, et al. CuSha: vertex-centric graph processing on GPUs [C]// Proceeding of the 23rd International Symposium on High-Performance Parallel and Distributed Computing. [S.l.]: ACM, 2014: 239-252.
|
13 |
ULLMANN J R. An algorithm for subgraph isomorphism [J] Journal of the ACM, 1976, 23(1): 31-42.
|
14 |
CORDELLA L P, FOGGIA P, SANSONE C, et al A (sub)graph isomorphism algorithm for matching large graphs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (10): 1367- 1372
doi: 10.1109/TPAMI.2004.75
|
15 |
CARLETTI V, FOGGIA P, SAGGESE A, et al Challenging the time complexity of exact subgraph isomorphism for huge and dense graphs with VF3[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 804- 818
doi: 10.1109/TPAMI.2017.2696940
|
16 |
HAN W S, LEE J, LEE J H. TurboISO: towards ultrafast and robust subgraph isomorphism search in large graph databases [C]// Proceedings of the ACM SIGMOD International Conference on Management of Data. [S.l.]: ACM, 2013: 337-348.
|
17 |
HE H, SINGH A K. Graphs-at-a-time: query language and access methods for graph databases [C]// Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. [S.l.]: ACM, 2008: 405-418.
|
18 |
SUN Z, WANG H Z, WANG H X, et al. Efficient subgraph matching on billion node graphs [C]// Proceedings of the VLDB Endowment. [S.l.]: VLDB Endowment, 2012, 5(9): 788-799.
|
19 |
ZHANG S J, LI S R, YANG J. GADDI: distance index based subgraph matching in biological networks [C]// Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology. [S.l.]: ACM, 2009: 192-203.
|
20 |
LEE J, HAN W S, KASPEROVICS R, et al. An in-depth comparison of subgraph isomorphism algorithms in graph databases [C]// Proceedings of the VLDB Endowment. [S.l.]: VLDB Endowment, 2012, 6(2): 133-144.
|
21 |
徐周波, 李珍, 刘华东, 等 基于邻居信息聚合的子图同构匹配算法[J]. 计算机应用, 2021, 41 (1): 43- 47 XU Zhou-bo, LI Zhen, LIU Hua-dong, et al Subgraph isomorphism matching algorithm based on neighbor information aggregation[J]. Journal of Computer Applications, 2021, 41 (1): 43- 47
|
22 |
MOORMAN J D, CHEN Q Y, TU T K, et al. Filtering methods for subgraph matching on multiplex networks [C]// Proceedings of the 2018 IEEE International Conference on Big Data. Seattle: IEEE, 2018: 3980-3985.
|
23 |
TRAN H N, KIM J J, HE B S. Fast subgraph matching on large graphs using graphics processors [C]// Proceedings of the 2015 International Conference on Database Systems for Advanced Applications. [S.l.]: Springer, 2015: 299-315.
|
24 |
WANG L, OWENS J D. Fast Gunrock subgraph matching (GSM) on GPUs [EB/OL]. [2022-06-01]. https://arxiv.org/pdf/2003.01527.pdf.
|
25 |
WANG Y Z H, DAVIDSON A, PAN Y C, et al. Gunrock: a high-performance graph processing library on the GPU [C]// Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. [S.l.]: ACM, 2015: 265-266
|
26 |
ZENG L, ZOU L, ÖZSU M T, et al. GSI: GPU-friendly subgraph isomorphism [C]// Proceedings of the 2020 IEEE 36th International Conference on Data Engineering. Dallas: IEEE, 2020: 1249-1260.
|
27 |
BONNICI V, GIUGNO R, BOMBIERI N. An efficient implementation of a subgraph isomorphism algorithm for GPUs [C]// Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine. Madrid: IEEE, 2018: 2674-2681.
|
28 |
汪洋, 江世杰, 曹宇聪, 等 多编码树GPU并行轴心子图匹配[J]. 计算机应用, 2022, 42 (1): 132- 139 WAGN Yang, JIANG Shi-jie, CAO Yu-cong, et al Parallel pivoted subgraph matching with multiple coding trees on GPU[J]. Journal of Computer Applications, 2022, 42 (1): 132- 139
|
29 |
KIRK D. NVIDIA CUDA software and GPU parallel computing architecture [C]// Proceedings of the 6th International Symposium on Memory Management. [S.l.]: ACM, 2007: 103–104.
|
30 |
NVIDIA: CUDA Toolkit documentation v10.2 [CP/OL]. (2019-11-28)[2022-06-01]. https://docs.nvidia.com/cuda/archive/10.2/.
|
31 |
ASHARI A, SEDAGHATI N, EISENLOHR J, et al. Fast sparse matrix-vector multiplication on GPUs for graph applications [C]// Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. New Orleans: IEEE, 2014: 781-792.
|
32 |
李岑浩, 崔鹏杰, 袁野, 等 面向大图子图匹配的多GPU编程模型[J]. 计算机科学与探索, 2023, 17 (7): 1576- 1585 LI Cen-hao, CUI Peng-jie, YUAN Ye, et al Muti-GPU programming model for subgraph matching in large graphs[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17 (7): 1576- 1585
|
33 |
LESKOVEC J. Stanford large network dataset collection [DS/OL]. (2021-09-17)[2022-06-01]. http://snap.stanford.edu/data/.
|
34 |
REZA T, RIPEANU M, TRIPOUL N, et al. PruneJuice: pruning trillion-edge graphs to a precise pattern-matching solution [C]// Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis. Dallas: IEEE, 2018: 1-17.
|
35 |
Boost Library: VF2 (Sub)Graph Isomorphism-master [CP/OL]. (2013-04-26) [2022-06-01]. https://www.boost.org/doc/libs/master/libs/graph.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|