Please wait a minute...
J4  2012, Vol. 46 Issue (10): 1803-1809    DOI: 10.3785/j.issn.1008-973X.2012.10.011
计算机技术﹑电信技术     
基于GPU的植物生长模拟
刘骥, 朱庆生, 黄晓凤, 曾令秋, 李松阳
重庆大学 计算机学院,重庆 400044
Plant growth simulation based on GPU
LIU Ji, ZHU Qing-sheng, HUANG Xiao-feng, ZENG Ling-qiu, LI Song-yang
College of Computer Science, Chongqing University, Chongqing 400044, China
 全文: PDF  HTML
摘要:

为了提高复杂植物生长模拟的性能,结合虚拟器官网络和图形处理器(GPU)技术提出植物生长模拟方法.该方法采用虚拟器官网络作为植物生长模型,用于描述植物器官的生理属性和形态属性、植物器官间的关系、环境对植物器官的影响以及植物器官的生长规则.利用GPU架构的优势,以并行计算的方式实现植物生长演化和植物形态展现,从而提高植物生长模拟的计算速度.实验结果证明,采用该方法不仅能够模拟植物的生长,而且相对基于CPU的串行植物生长演化和形态展现有性能上的优势.

Abstract:

A plant growth simulation method exploiting the virtual organ network and graphics processing unit (GPU) technique was proposed in order to improve the performance of complex plant growth simulation. The virtual organ network was used as growth model of a plant, which described the physiological and morphological properties of a plant organ, the relationships among plant organs, the impact of environment on plant organs, and the growth rules of plant organs. Taking full advantage of GPU architecture, the method can accomplish the plant growth evaluation and plant visualization by using parallel computing which greatly accelerates the plant growth simulation. Experimental results illustrate that the approach can simulate the plant growth and has better performance compared with evaluating plant growth and visualizing plant structure in serial by using CPU.

出版日期: 2012-10-01
:  TP 391.9  
基金资助:

国家自然科学基金资助项目(60773082);重庆市自然科学基金资助项目(CSTC,2010BB2213);中央高校基本科研业务费资助项目 (CDJRC10180010).

作者简介: 刘骥(1981—), 男, 讲师, 从事虚拟现实和计算机图形学的研究. E-mail: liujiboy@cqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘骥, 朱庆生, 黄晓凤, 曾令秋, 李松阳. 基于GPU的植物生长模拟[J]. J4, 2012, 46(10): 1803-1809.

LIU Ji, ZHU Qing-sheng, HUANG Xiao-feng, ZENG Ling-qiu, LI Song-yang. Plant growth simulation based on GPU. J4, 2012, 46(10): 1803-1809.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.10.011        http://www.zjujournals.com/eng/CN/Y2012/V46/I10/1803

[1] GODIN C, SINOQUET H. Functionalstructural plant modeling [J]. New Phytologist, 2005, 166(3): 705-708.
[2] PERTTUNEN J, NIKINMAA E, LECHOWICZ M. Application of the functionalstructural tree model LIGNUM to sugar maple saplings (Acer saccharum Marsh) growing in forest gaps [J]. Annals of Botany, 2001, 88(3): 471-481.
[3] EBNER M. Evolution and growth of virtual plants [J]. Advances in Artificial Life, 2003, 2801: 228-237.
[4] ALSWEIS M, DEUSSEN O. Efficient simulation of vegetation using light and nutrition competition [C]∥ Proceedings of the 17th Conference on Simulation and Visualization. Magdeburg: SCS Publishing House, 2006: 35-48.
[5] GUO Y, MA Y, ZHAN Z. Parameter optimization and field validation of the functionalstructural model GREENLAB for maize [J]. Annals of Botany, 2006, 97(2): 217-230.
[6] KANG M Z, COURNEDE P H, DE REFFYE P. Analytical study of a stochastic plant growth model: application to the GreenLab model [J]. Mathematics and Computers in Simulation, 2008, 78(1): 57-75.
[7] HUANG Z, ZHENG Y, XIE L. A virtual plant ecosystem featuring parallel computing and distributed visualization [C]∥ 1st International MultiSymposiums on Computer and Computational Sciences. Hangzhou:[s. n.], 2006: 424-429.
[8] YANG T, HUANG Z, LIN X. A parallel algorithm for binarytreebased string rewriting in Lsystems [C]∥ Proceedings of the 2nd International MultiSymposiums on Computer and Computational Sciences. Iowa City: IEEE, 2007: 245-252.
[9] NVIDIA Corporation. CUDA homepage [EB/OL]. [20110704]. http:∥www.nvidia.com/object/cuda_home_new.html.
[10] AMD Corporation. ATI stream homepage [EB/OL]. [2011-07-04]. http:∥www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAMTECHNOLOGY/Pages/streamtechnology.aspx.
[11] LIPP M, WONKAY P, WIMMER M. Parallel generation of multiple Lsystems [J]. Computers and Graphics, 2010, 34(5): 585-593.
[12] ZHAO X, HU J, KANG M. GPU accelerated plant growth modeling and visualization [C]∥ Proceedings of the 2009 Plant Growth Modeling, Simulation, Visualization, and Applications. Beijing: IEEE, 2010: 441-444.

[1] 王贝,李基拓,陆国栋. 空间趋向曲线引导的网格曲面拼接[J]. J4, 2013, 47(11): 2003-2009.
[2] 唐昉, 周晓军, 魏燕定. 驾驶模拟器中的一种车辙可视化方法[J]. J4, 2013, 47(6): 1031-1035.
[3] 赵振,张树有. 基于分步回归的低压断路器分断电流求解技术[J]. J4, 2012, 46(11): 1943-1952.
[4] 李强, 刘淑莲, 应光耀, 郑水英. 考虑流固耦合作用的PET瓶跌落碰撞数值仿真[J]. J4, 2012, 46(6): 980-986.
[5] 赵振, 张树有. 全分断周期混合电流模型及其应用[J]. J4, 2012, 46(2): 301-308.
[6] 赵振,张树有. 低压断路器分断过程电磁-运动耦合问题求解[J]. J4, 2011, 45(11): 1913-1921.
[7] 林小夏,张树有,陈婧,赵振. 多体动力学与有限元联合仿真的时变载荷历程模型[J]. J4, 2011, 45(9): 1643-1649.
[8] 方锡武, 刘振宇, 谭建荣. 基于混合法的二维域颗粒堆积算法[J]. J4, 2011, 45(4): 650-655.
[9] 李重视, 闫丹丹, 朱善安, Bin He. 基于无网格有限元方法的心磁场计算仿真研究[J]. J4, 2010, 44(3): 463-467.
[10] 欧海英, 李晓宇, 付战平. 设计优化中的非线性主轴降维映射法[J]. J4, 2010, 44(1): 87-93.