Please wait a minute...
J4  2010, Vol. 44 Issue (3): 463-467    DOI: 10.3785/j.issn.1008973X.2010.03.009
自动化技术、计算机技术     
基于无网格有限元方法的心磁场计算仿真研究
李重视1, 闫丹丹1, 朱善安1, Bin He2
1. 浙江大学 电气工程学院,浙江 杭州 310027; 2. 明尼苏达大学 生物医学工程系,  明尼苏达 明尼阿波利斯 55455
LI Zhongshi1, YAN Dandan1, ZHU Shanan1, HE Bin 2
 全文: PDF  HTML
摘要:

利用无网格有限元方法求解毕奥萨伐定律来计算电流偶极子源在任意形状均质容积导体外产生的磁场分布.通过毕奥萨伐定律计算容积导体外产生的磁场分布须先得到整个媒质中的电流密度分布,依据相应的边界条件,采用无网格有限元方法求解媒质容积导体有限元模型中各节点的电势;通过对电势求梯度得到媒质内部的电流密度分布;媒质内部感应磁场分布的各个分量可通过对电流密度进行数值积分计算来实现.为了验证提出的无网格有限元方法的有效性,在单层均质球模型上进行了仿真研究,并将该方法应用于从核磁共振成像(MRI)得到的真实形状的心脏躯干心脏模型上,取得了令人满意的计算结果,表明了算法的有效性及其在心磁图(MEG)和磁场分布(MCG)上的潜在应用前景.
关键词: 

Abstract:

The magnetic field outside produced by the current dipole within a volume conductor of an arbitrary geometry was calculated by using a meshless finite element method (FEM) and BioSavart law. In order to take the advantage of BioSavart law, the current density within the whole medium has to be calculated first. According to the boundary conditions, the meshless FEM was used to calculate the potential at each node. The current density was achieved by the gradient of potential. The components of the induced field were realized by the integral of current density. The algorithm was evaluated on a singlelayer homogeneous sphere model with a satisfactory result achieved. This algorithm was also used on the hearttorso model from magnetic resonance imaging of a healthy person for the latent application on the analysis of magnetocardiogram (MCG) and magnetoencephalogram(MEG).

出版日期: 2012-03-20
:  TP 391.9  
基金资助:

国家自然科学基金资助项目(50577055)

通讯作者: 朱善安,男,教授,博导     E-mail: zsa@zju.edu.cn
作者简介: 李重视(1978—),男,浙江临安人,博士生,从事生物电仿真计算研究
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李重视, 闫丹丹, 朱善安, Bin He. 基于无网格有限元方法的心磁场计算仿真研究[J]. J4, 2010, 44(3): 463-467.

LI Chong-Shi, YAN Dan-Dan, SHU Shan-An, Bin He. . J4, 2010, 44(3): 463-467.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2010.03.009        http://www.zjujournals.com/eng/CN/Y2010/V44/I3/463

[1] GREENSITE F. Heart surface electrocardiographic inverse solutions modeling and imaging of bioelectric activity: principles and applications[M]. New York: Kluwer/Plenum. 2004.
[2] HE B. Electrocardiographic tomographic imaging modeling and imaging of bioelectric activity: principles and applications[M]. New York: Kluwer/ Plenum, 2004.
[3] HE B, MUSHA T, OKAMOTO Y, et al. Electric dipole tracing in the brain by means of the boundary element method and its solution accuracy [J]. IEEE Trans Biomed Eng, 1987, 34: 406414.
[4] AOKI M, OKAMOTO Y, MUSHA T, et al. Threedimensional simulation of the ventricular depolarization and repolarization processes and body surface potentials: normal heart and bundle branch block[J]. IEEE Trans Biomed Eng, 1987, 34(6): 454.
[5] ZHANG Yingchun, ZHU Shanan, HE B. A highorder finite element algorithm for solving the threedimensional EEG forward problem [J]. Phys Med Biol, 2004, 49: 29752987.
[6] HAUEISEN J, RAMON C, EISELT M, et al. Influence of tissue resistivities on neuromagnetic fields and eletric potentials studied with a finite element model of the head [J]. IEEE Trans Biomed Eng, 1997, 44(8): 727735.
[7] ROSENFELD M, TANAMI R, ABBOUD S. Numerical solution of the potential due to dipole sources in volume conductors with arbitrary geometry and conductivity [J]. IEEE Trans Biomed Eng, 1996, 43(7): 679689.
[8] LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. The Astron J, 1977, 8(12): 10131024.
[9] SWEGLE J W, HICKS D L, ATTAWAY S W. Smoothed particle hydrodynamics stability analysis [J]. J Comput Phys, 1995, 116: 123134.
[10] CHEN J K, BERAUN J E, JIH C J. An improvement for tensile instability in smoothed particle hydrodynamics [J]. Comput Mech, 1999, 23: 279287.
[11] BELYTSCHKO T, GU L, LU Y Y. Fracture and crack growth by elementfree Galerkin methods [J]. Model Simul Mater Sci Eng, 1994, 2: 307318.
[12] DURATE C A, ODEN J T. Hp clouds:a meshless method to solve boundaryvalue problems\
[R\]. Austin: University of Texas at Austin, 1995.
[13] BELYTSCHKO T, KRONGAUZ Y, ORGAN B, et al. Meshless methods: an overview and recent developments [J], Comput Methods in App Mech and Eng, 1996, 139(14): 347.
[14] ZHANG G M, BATRA R C. Modified smoothed particle hydrodynamics method and its application to transient problems [J]. Computational Mechanics, 2004, 34: 137146.
[15] ZHANG X, LIU X H, SONG K Z, et al. Leastsquare collocation meshless method[J]. Int J Numer Methods Eng, 2001, 51(9): 10891100.
[16] von ELLENRIEDER N, MURAVCHIK C H, NEHORAI A, A meshless method for solving the EEG forward problem[J]. IEEE Trans on Biomed Eng, 2005, 52(2): 249257.
[17] WANG Y, RUDY Y. Application of the method of fundamental solutions to potentialbased inverse electrocardiography[J] Ann Biomed Eng, 2006,34(8): 12721288.
[18] LI Z S, ZHU S A,HE B, Solving the ECG forward problem by means of a meshless finite element method[J].Phys Med Biol, 2007, 52: N287N296.
[19] CUFFIN BN, COHEN D, Magnetic fileds of a dipole in spherical volume conductor shapes[J], IEEE Trans Biomed Eng, 1977, 24(4): 373381.

[1] 王贝,李基拓,陆国栋. 空间趋向曲线引导的网格曲面拼接[J]. J4, 2013, 47(11): 2003-2009.
[2] 唐昉, 周晓军, 魏燕定. 驾驶模拟器中的一种车辙可视化方法[J]. J4, 2013, 47(6): 1031-1035.
[3] 赵振,张树有. 基于分步回归的低压断路器分断电流求解技术[J]. J4, 2012, 46(11): 1943-1952.
[4] 刘骥, 朱庆生, 黄晓凤, 曾令秋, 李松阳. 基于GPU的植物生长模拟[J]. J4, 2012, 46(10): 1803-1809.
[5] 李强, 刘淑莲, 应光耀, 郑水英. 考虑流固耦合作用的PET瓶跌落碰撞数值仿真[J]. J4, 2012, 46(6): 980-986.
[6] 赵振, 张树有. 全分断周期混合电流模型及其应用[J]. J4, 2012, 46(2): 301-308.
[7] 赵振,张树有. 低压断路器分断过程电磁-运动耦合问题求解[J]. J4, 2011, 45(11): 1913-1921.
[8] 林小夏,张树有,陈婧,赵振. 多体动力学与有限元联合仿真的时变载荷历程模型[J]. J4, 2011, 45(9): 1643-1649.
[9] 方锡武, 刘振宇, 谭建荣. 基于混合法的二维域颗粒堆积算法[J]. J4, 2011, 45(4): 650-655.
[10] 欧海英, 李晓宇, 付战平. 设计优化中的非线性主轴降维映射法[J]. J4, 2010, 44(1): 87-93.