机械工程、能源工程 |
|
|
|
|
基于改进YOLOv5s的印刷电路板缺陷检测算法 |
周著国1,2( ),鲁玉军1,*( ),吕利叶1,2 |
1. 浙江理工大学 机械工程学院,浙江 杭州 310018 2. 浙江理工大学 龙港研究院,浙江 温州 325802 |
|
Improved YOLOv5s-based algorithm for printed circuit board defect detection |
Zhuguo ZHOU1,2( ),Yujun LU1,*( ),Liye LV1,2 |
1. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China 2. Longgang Institute of Zhejiang Sci-Tech University, Wenzhou 325802, China |
1 |
XIAO Z, WANG Z, LIU D, et al A path planning algorithm for PCB surface quality automatic inspection[J]. Journal of Intelligent Manufacturing, 2021, 33 (6): 1- 13
|
2 |
黄银花, 李东波. 高速高精度印刷电路板表面贴装自动光学检测系统的研究 [J]. 机床与液压, 2014, 42(21): 105-108. HUANG Yinhua , LI Dongbo. Research on high-speed and high-precision automatic optical inspection system for surface mount technology of printed circuit board [J]. Machine Tool and Hydraulics, 2014, 42(21): 105-108.
|
3 |
赵翔宇, 周亚同, 何峰, 等 分层提取匹配印刷电路板元器件缺陷检测[J]. 仪表技术与传感器, 2018, (8): 84- 89 ZHAO Xiangyu, ZHOU Yatong, HE Feng, et al Defect detection of printed circuit board components based on hierarchical extraction and matching[J]. Instrument Technique and Sensor, 2018, (8): 84- 89
doi: 10.3969/j.issn.1002-1841.2018.08.022
|
4 |
郭庆梅, 刘宁波, 王中训, 等. 基于深度学习的目标检测算法综述 [J]. 探测与控制学报, 2023, 45(6): 10-20. GUO Qingmei, LIU Ningbo , WANG Zhongxun, et al. A review of object detection algorithms based on deep learning [J]. Journal of Detection and Control, 2023, 45(6): 10-20.
|
5 |
赵景波, 杜保帅 基于深度学习的小目标检测技术发展[J]. 电光与控制, 2023, 30 (2): 63- 70 ZHAO Jingbo, DU Baoshuai Development of small object detection technology based on deep learning[J]. Electronics Optics and Control, 2023, 30 (2): 63- 70
doi: 10.3969/j.issn.1671-637X.2023.02.012
|
6 |
谢富, 朱定局 深度学习目标检测方法综述[J]. 计算机系统应用, 2022, 31 (2): 1- 12 XIE Fu, ZHU Dingju A review of deep learning-based object detection methods[J]. Computer Systems and Application, 2022, 31 (2): 1- 12
|
7 |
HU B, WANG J H Detection of PCB surface defects with improved faster-RCNN and feature pyramid network[J]. IEEE Access, 2020, (8): 108335- 108345
|
8 |
TSAI D-M, CHOU Y-H Fast and precise positioning in PCBs using deep neural network regression[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69 (7): 4692- 4701
|
9 |
ZHANG H, JIANG L, LI C CS-ResNet: cost-sensitive residual convolutional neural network for PCB cosmetic defect detection[J]. Expert Systems with Applications, 2021, 185: 115673
doi: 10.1016/j.eswa.2021.115673
|
10 |
张艳, 张明路, 吕晓玲, 等 深度学习小目标检测算法研究综述[J]. 计算机工程与应用, 2022, 58 (15): 1- 17 ZHANG Yan, ZHANG Minglu, LV Xiaoling, et al A review of deep learning-based small object detection algorithms[J]. Computer Engineering and Applications, 2022, 58 (15): 1- 17
doi: 10.3778/j.issn.1002-8331.2112-0176
|
11 |
王永利, 曹江涛, 姬晓飞 基于卷积神经网络的PCB缺陷检测与识别算法[J]. 电子测量与仪器学报, 2019, 33 (8): 78- 84 WANG Yongli, CAO Jiangtao, JI Xiaofei PCB defect detection and recognition algorithm based on convolutional neural network[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33 (8): 78- 84
|
12 |
苏佳, 贾欣雨, 侯卫民 基于YOLO-J的PCB缺陷检测算法[J]. 计算机集成制造系统, 2024, 30 (11): 3984- 3998 SU Jia, JIA Xinyu, HOU Weimin PCB defect detection algorithm based on YOLO-J[J]. Computer Integrated Manufacturing Systems, 2024, 30 (11): 3984- 3998
|
13 |
王淑青, 张子言, 朱文鑫, 等 基于改进YOLOv5的PCB板表面缺陷检测[J]. 仪表技术与传感器, 2023, (5): 106- 111 WANG Shuqing, ZHANG Ziyan, ZHU Wenxin, et al Surface defect detection of PCB based on improved YOLOv5[J]. Instrument Technique and Sensor, 2023, (5): 106- 111
doi: 10.3969/j.issn.1002-1841.2023.05.020
|
14 |
WANG X, ZHANG H Y, LIU Q H, et al You-only-look-once multiple-strategy printed circuit board defect detection model[J]. IEEE Multimedia, 2024, 31 (1): 76- 87
|
15 |
GEOFFREY S, MAHMOOD A-K. An implementation of the HDBSCAN* clustering algorithm [J], Applied Sciences, 2022, 12(5): 2405.
|
16 |
WANG Z, WU L, LI T, et al A smoke detection model based on improved YOLOv5[J]. Mathematics, 2022, 10 (7): 1190
doi: 10.3390/math10071190
|
17 |
葛程鹏, 赵东, 王蕊, 等 基于改进DBSCAN和距离共识评估的分段点云去噪方法[J]. 系统仿真学报, 2024, 36 (8): 1800- 1809 GE Chengpeng, ZHAO Dong, WANG Rui, et al A denoising method for segmented point cloud based on improved DBSCAN and distance consensus evaluation[J]. Journal of System Simulation, 2024, 36 (8): 1800- 1809
|
18 |
CHIEN-YAO W, YEH IH, HONG-YUAN MARK L. YOLOv9: learning what you want to learn using programmable gradient information [EB/OL]. (2024-02-29) [2024-08-01]. https://doi.org/10.48550/arXiv.2402.13616.
|
19 |
HE J J, ZHANG S H, YANG C H, et al. Pest recognition in microstates state: an improvement of YOLOv7 based on spatial and channel reconstruction convolution for feature redundancy and vision transformer with bi-level routing attention [J]. Frontiers in Plant Science, 2024, 15: 1327237.
|
20 |
XU X Z, JIANG Y Q, CHEN W H, et al. DAMO-YOLO : a report on real-time object detection design [EB/OL]. (2023-04-24) [2024-08-01]. https://doi.org/10.48550/arXiv.2211.15444.
|
21 |
CHEN Z X, HE Z W, LU Z-M DEA-Net: single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE Transactions on Image Processing, 2024, 33: 1002- 1015
doi: 10.1109/TIP.2024.3354108
|
22 |
LIU W Z, LU H, FU H T, et al. Learning to upsample by learning to sample [EB/OL]. (2023-08-29) [2024-08-01]. https://doi.org/10.48550/arXiv.2308.15085.
|
23 |
CHENG C S, HOU C J, WEN X, et al Small-sample underwater target detection: a joint approach utilizing diffusion and YOLOv7 model[J]. Remote Sensing, 2023, 15 (19): 4772
doi: 10.3390/rs15194772
|
24 |
GUO A, SUN K Q, ZHANG Z Y A lightweight YOLOv8 integrating FasterNet for real-time underwater object detection[J]. Journal of Real-Time Image Processing, 2024, 21 (2): 1- 15
|
25 |
XIAO G S, HOU S L, ZHOU H Y PCB defect detection algorithm based on CDI-YOLO[J]. Scientific Reports, 2024, 14 (1): 7351
doi: 10.1038/s41598-024-57491-3
|
26 |
ZHOU G A, YU L J, SU Y X, et al Lightweight PCB defect detection algorithm based on MSD-YOLO[J]. Cluster Computing, 2023, 27 (3): 3559- 3573
|
27 |
YUAN Z H, TANG X Y, NING H, et al LW-YOLO: lightweight deep learning model for fast and precise defect detection in printed circuit boards[J]. Symmetry, 2024, 16 (4): 418
doi: 10.3390/sym16040418
|
28 |
TANG J L, LIU S B, ZHAO D X, et al PCB-YOLO: an improved detection algorithm of PCB surface defects based on YOLOv5[J]. Sustainability, 2023, 15 (7): 5963
doi: 10.3390/su15075963
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|