计算机技术 |
|
|
|
|
基于正态分布相似性的双视角点云配准方法 |
李朝龙( ),庞善民*( ),王超玉,王翌丰,史鹏程 |
西安交通大学 软件学院,陕西 西安 710049 |
|
Pair-wise point cloud registration method based on normal distribution similarity |
Zhaolong LI( ),Shanmin PANG*( ),Chaoyu WANG,Yifeng WANG,Pengcheng SHI |
School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China |
引用本文:
李朝龙,庞善民,王超玉,王翌丰,史鹏程. 基于正态分布相似性的双视角点云配准方法[J]. 浙江大学学报(工学版), 2025, 59(6): 1179-1190.
Zhaolong LI,Shanmin PANG,Chaoyu WANG,Yifeng WANG,Pengcheng SHI. Pair-wise point cloud registration method based on normal distribution similarity. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1179-1190.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.06.009
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I6/1179
|
1 |
GOJCIC Z, ZHOU C, WEGNER J D, et al. Learning multiview 3D point cloud registration [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1759–1769.
|
2 |
LI P, WANG R, WANG Y, et al Evaluation of the ICP algorithm in 3D point cloud registration[J]. IEEE Access, 2020, 8: 68030- 68048
doi: 10.1109/ACCESS.2020.2986470
|
3 |
CHEN X, MA H, WAN J, et al. Multi-view 3D object detection network for autonomous driving [C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6526–6534.
|
4 |
ZHENG Y, LI Y, YANG S, et al Global-PBNet: a novel point cloud registration for autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (11): 22312- 22319
doi: 10.1109/TITS.2022.3153133
|
5 |
范光宇, 宫宇宸, 饶蕾, 等 基于灰度相似性的激光点云与全景影像配准[J]. 浙江大学学报: 工学版, 2022, 56 (8): 1633- 1639 FAN Guangyu, GONG Yuchen, RAO Lei, et al Registration of laser point cloud and panoramic image based on gray similarity[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (8): 1633- 1639
|
6 |
龚靖渝, 楼雨京, 柳奉奇, 等 三维场景点云理解与重建技术[J]. 中国图象图形学报, 2023, 28 (6): 1741- 1766 GONG Jingyu, LOU Yujing, LIU Fengqi, et al Scene point cloud understanding and reconstruction technologies in 3D space[J]. Journal of Image and Graphics, 2023, 28 (6): 1741- 1766
doi: 10.11834/jig.230004
|
7 |
BESL P J, MCKAY N D A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (2): 239- 256
doi: 10.1109/34.121791
|
8 |
BIBER P, STRASSER W. The normal distributions transform: a new approach to laser scan matching [C]// IEEE International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2003: 2743–2748.
|
9 |
CHARLES R Q, HAO S, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 77–85.
|
10 |
CHETVERIKOV D, SVIRKO D, STEPANOV D, et al. The trimmed iterative closest point algorithm [C]// International Conference on Pattern Recognition. Quebec City: IEEE, 2002: 545–548.
|
11 |
BOUAZIZ S, TAGLIASACCHI A, PAULY M Sparse iterative closest point[J]. Computer Graphics Forum, 2013, 32 (5): 113- 123
doi: 10.1111/cgf.12178
|
12 |
PAVLOV A L, OVCHINNIKOV G W, DERBYSHEV D Y, et al. AA-ICP: iterative closest point with Anderson acceleration [C]// IEEE International Conference on Robotics and Automation. Brisbane: IEEE, 2018: 3407–3412.
|
13 |
ZHANG J, YAO Y, DENG B Fast and robust iterative closest point[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (7): 3450- 3466
|
14 |
YANG J, LI H, CAMPBELL D, et al Go-ICP: a globally optimal solution to 3D ICP point-set registration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38 (11): 2241- 2254
doi: 10.1109/TPAMI.2015.2513405
|
15 |
SHI X, LIU T, HAN X Improved iterative closest point (ICP) 3D point cloud registration algorithm based on point cloud filtering and adaptive fireworks for coarse registration[J]. International Journal of Remote Sensing, 2020, 41 (8): 3197- 3220
doi: 10.1080/01431161.2019.1701211
|
16 |
LI Z, WANG C, MA J, et al Point set registration via rigid transformation consensus[J]. Computers and Electrical Engineering, 2022, 101: 108098
doi: 10.1016/j.compeleceng.2022.108098
|
17 |
徐文菲, 金莉, 韩旭, 等 面向缺失点云配准的镜像迭代最近点算法[J]. 西安交通大学学报, 2023, 57 (7): 201- 212,220 XU Wenfei, JIN Li, HAN Xu, et al Mirrored iterative closest point algorithm for missing point cloud registration[J]. Journal of Xi’an Jiaotong University, 2023, 57 (7): 201- 212,220
doi: 10.7652/xjtuxb202307019
|
18 |
CHEN Y, MEDIONI G Object modelling by registration of multiple range images[J]. Image and Vision Computing, 1992, 10 (3): 145- 155
doi: 10.1016/0262-8856(92)90066-C
|
19 |
RUSINKIEWICZ S, LEVOY M. Efficient variants of the ICP algorithm [C]// 3rd International Conference on 3-D Digital Imaging and Modeling. Quebec City: IEEE, 2001: 145–152.
|
20 |
RUSINKIEWICZ S A symmetric objective function for ICP[J]. ACM Transactions on Graphics, 2019, 38 (4): 1- 7
|
21 |
LI J, HU Q, ZHANG Y, et al Robust symmetric iterative closest point[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 185: 219- 231
doi: 10.1016/j.isprsjprs.2022.01.019
|
22 |
MAGNUSSON M, LILIENTHAL A, DUCKETT T Scan registration for autonomous mining vehicles using 3D-NDT[J]. Journal of Field Robotics, 2007, 24 (10): 803- 827
doi: 10.1002/rob.20204
|
23 |
STOYANOV T, MAGNUSSON M, LILIENTHAL A J. Point set registration through minimization of the L2 distance between 3D-NDT models [C]// IEEE International Conference on Robotics and Automation. Saint Paul: IEEE, 2012: 5196–5201.
|
24 |
AOKI Y, GOFORTH H, SRIVATSAN R A, et al. PointNetLK: robust and efficient point cloud registration using PointNet [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 7156–7165.
|
25 |
WANG Y, SOLOMON J. Deep closest point: learning representations for point cloud registration [C]// IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 3522–3531.
|
26 |
WANG Y, SUN Y, LIU Z, et al Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38 (5): 1- 12
|
27 |
YUAN W, ECKART B, KIM K, et al. DeepGMR: learning latent Gaussian mixture models for registration [C]// European Conference on Computer Vision. Glasgow: Springer, 2020: 733–750.
|
28 |
XU H, LIU S, WANG G, et al. OMNet: learning overlapping mask for partial-to-partial point cloud registration [C]// IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 3112–3121.
|
29 |
MEI G, TANG H, HUANG X, et al. Unsupervised deep probabilistic approach for partial point cloud registration [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 13611–13620.
|
30 |
ZHU J, JIANG Z, EVANGELIDIS G D, et al Efficient registration of multi-view point sets by K-means clustering[J]. Information Sciences, 2019, 488: 205- 218
doi: 10.1016/j.ins.2019.03.024
|
31 |
ZHU J, MU J, YAN C B, et al 3DMNDT: 3D multi-view registration method based on the normal distributions transform[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21 (1): 488- 501
doi: 10.1109/TASE.2022.3225679
|
32 |
Stanford University. The Stanford 3D scanning repository [EB/OL]. (2014-08-19) [2021-10-01]. https://graphics.stanford.edu/data/3Dscanrep/.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|