Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (6): 1140-1147    DOI: 10.3785/j.issn.1008-973X.2025.06.005
计算机技术     
基于异常检测的图像特征匹配算法
肖剑1(),武亮亮1,何昕泽1,胡欣2,*()
1. 长安大学 电子与控制工程学院,陕西 西安 710064
2. 长安大学 能源与电气工程学院,陕西 西安 710064
Image feature matching algorithm based on anomaly detection
Jian XIAO1(),Liangliang WU1,Xinze HE1,Xin HU2,*()
1. School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China
2. School of Energy and Electrical Engineering, Chang’an University, Xi’an 710064, China
 全文: PDF(1913 KB)   HTML
摘要:

基于预定义参数化模型的特征匹配方法通用性较低,为此提出基于异常检测的特征匹配算法(RFM-AD). 根据假定特征匹配构建异常检测样本,将特征匹配问题转换为异常样本点检测问题,引入局部异常因子(LOF)算法作为异常检测的基础. 针对LOF算法不能有效检测低密度样本的缺陷,引入并改进基于连通性的异常检测方法(COF),并基于引导匹配策略对COF算法和LOF算法进行融合. 在随机选取的30幅涉及不同变换模型和噪声干扰的图像对上测试算法的参数设置,确定全局最优的关键参数. 在4个公开数据集上进行实验,结果表明,本研究算法在面对大量异常值时具有良好的鲁棒性和匹配性能;在保证较高匹配准确率的情况下,本研究算法相比于RANSAC、LPM、RFM-SCAN等先进算法取得了较高的召回率;在内点率最低的Retina数据集上,本研究算法的F分数较高.

关键词: 特征匹配异常检测局部异常因子误匹配剔除图像配准    
Abstract:

A robust feature matching algorithm based on anomaly detection (RFM-AD) was proposed to solve the problem of low generality in feature matching methods that rely on pre-defined parameterized models. Firstly, anomaly detection samples were constructed based on putative feature matches, thereby feature matching problems were transformed into anomaly detection problems, and the local outlier factor (LOF) algorithm was introduced as the foundation for anomaly detection. Secondly, the connectivity-based outlier factor (COF) method was introduced and improved to address the deficiency of LOF algorithm in effectively detecting low-density samples, and a guided matching strategy was used to fuse COF and LOF for enhanced performance. Finally, the parameter settings of the proposed algorithm were tested on 30 randomly selected image pairs involving different transformation models and noise levels, and the globally optimal parameters were determined. Experiments conducted on four public datasets demonstrated the robustness and promising performance of the proposed algorithm when dealing with a large number of outliers. Under the premise of maintaining a high matching precision, the proposed algorithm achieved a leading recall compared to advanced algorithms, such as RANSAC, LPM and RFM-SCAN. Specifically, the proposed algorithm achieved a leading F-score on the Retina dataset, which had the lowest inlier rate.

Key words: feature matching    anomaly detection    local outlier factor    mismatch removal    image registration
收稿日期: 2024-03-29 出版日期: 2025-05-30
CLC:  TP 391  
基金资助: 西安市人工智能重点产业链资助项目(23ZDCYJSGG0013-2023); 陕西省秦创原“科学家+工程师”队伍建设资助项目(2024QCY-KXJ-161);咸阳市重点研发计划资助项目(L2024-ZDYF-ZDYF-GY-0004).
通讯作者: 胡欣     E-mail: xiaojian@chd.edu.cn;huxin@chd.edu.cn
作者简介: 肖剑(1975—),男,副教授,博士,从事检测技术研究. orcid.org/0000-0003-0650-6099. E-mail:xiaojian@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
肖剑
武亮亮
何昕泽
胡欣

引用本文:

肖剑,武亮亮,何昕泽,胡欣. 基于异常检测的图像特征匹配算法[J]. 浙江大学学报(工学版), 2025, 59(6): 1140-1147.

Jian XIAO,Liangliang WU,Xinze HE,Xin HU. Image feature matching algorithm based on anomaly detection. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1140-1147.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.06.005        https://www.zjujournals.com/eng/CN/Y2025/V59/I6/1140

图 1  LOF、改进COF、RFM-AD的异常因子分布以及F分数累计分布
图 2  不同参数设置下RFM-AD在30幅图像对上的平均F分数
图 3  RFM-AD在7个代表图像对上的特征匹配结果
图 4  RFM-AD、RANSAC、LPM、RFM-SCAN、LOGO在7个代表图像对上的特征匹配准确率、召回率、F分数的累计分布
图 5  RFM-AD、RANSAC、LPM、RFM-SCAN、LOGO的特征匹配结果
图 6  RFM-AD,RANSAC,LPM,RFM-SCAN,LOGO在VGG,Retina,DAISY,AdelaideRMF数据集上的内点率、准确率、召回率、F分数的累计分布
1 MA J, JIANG X, FAN A, et al Image matching from handcrafted to deep features: a survey[J]. International Journal of Computer Vision, 2020, 129 (1): 1- 57
2 GHAFFARI A, FATEMIZADEH E Image registration based on low rank matrix: rank-regularized SSD[J]. IEEE Transactions on Medical Imaging, 2018, 37 (1): 138- 150
doi: 10.1109/TMI.2017.2744663
3 高雪艳, 潘安宁, 杨扬 基于图像混合特征的城市绿地遥感图像配准[J]. 浙江大学学报: 工学版, 2019, 53 (6): 1205- 1217
GAO Xueyan, PAN Anning, YANG Yang Urban green space remote sensing image registration using image mixed features[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (6): 1205- 1217
4 LOWE D G Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91- 110
5 FISCHLER M A, BOLLES R C Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24 (6): 381- 395
6 MA J, WU J, ZHAO J, et al Nonrigid point set registration with robust transformation learning under manifold regularization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30 (12): 3584- 3597
doi: 10.1109/TNNLS.2018.2872528
7 CHUM O, MATAS J. Matching with PROSAC: progressive sample consensus [C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 220–226.
8 RAGURAM R, CHUM O, POLLEFEYS M, et al USAC: a universal framework for random sample consensus[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (8): 2022- 2038
doi: 10.1109/TPAMI.2012.257
9 MA J, ZHAO J, TIAN J, et al Robust point matching via vector field consensus[J]. IEEE Transactions on Image Processing, 2014, 23 (4): 1706- 1721
10 BIAN J W, LIN W Y, LIU Y, et al GMS: grid-based motion statistics for fast, ultra-robust feature correspondence[J]. International Journal of Computer Vision, 2019, 128 (6): 1- 14
11 MA J, ZHAO J, JIANG J, et al Locality preserving matching[J]. International Journal of Computer Vision, 2019, 127 (5): 512- 531
doi: 10.1007/s11263-018-1117-z
12 JIANG X, XIA Y, ZHANG X P, et al. Robust image matching via local graph structure consensus [J]. Pattern Recognition, 2022, 126.
13 XIA Y, MA J Locality-guided global-preserving optimization for robust feature matching[J]. IEEE Transactions on Image Processing, 2022, 31: 5093- 5108
doi: 10.1109/TIP.2022.3192993
14 MA J, JIANG X, JIANG J, et al Robust feature matching using spatial clustering with heavy outliers[J]. IEEE Transactions on Image Processing, 2019, 29: 736- 746
15 BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers [C]// ACM SIGMOD International Conference on Management of Data. Dallas: ACM, 2000, 29(2): 93–104.
16 TANG J, CHEN Z X, FU A W C, et al. Enhancing effectiveness of outlier detections for low density patterns [C]// Pacific-Asia Conference on Knowledge Discovery and Data Mining. Taipei: Springer, 2002, 535–548.
17 许茂龙, 姜高霞, 王文剑 基于异常检测的标签噪声过滤框架[J]. 计算机科学, 2024, 51 (2): 87- 99
XU Maolong, JIANG Gaoxia, WANG Wenjian Label noise filtering framework based on outlier detection[J]. Computer Science, 2024, 51 (2): 87- 99
doi: 10.11896/jsjkx.221100264
18 HARTIGAN J A, WONG M A A K-means clustering algorithm[J]. Applied Statistics, 1979, 28 (1): 100- 108
19 RAMASWAMY S, RASTOGI R, SHIM K. Efficient algorithms for mining outliers from large data sets [C]// ACM SIGMOD International Conference on Management of Data. Dallas: ACM, 2000: 29(2): 427–438.
20 孔翎超, 刘国柱 离群点检测算法综述[J]. 计算机科学, 2024, 51 (8): 20- 33
KONG Lingchao, LIU Guozhu Review of outlier detection algorithms[J]. Computer Science, 2024, 51 (8): 20- 33
doi: 10.11896/jsjkx.230600052
21 MIKOLAJCZYK K, TUYTELAARS T, SCHMID C, et al A comparison of affine region detectors[J]. International Journal of Computer Vision, 2005, 65 (1): 43- 72
22 TOLA E, LEPETIT V, FUA P DAISY: an efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (5): 815- 830
doi: 10.1109/TPAMI.2009.77
[1] 蒋沁诚,陶建峰,王洋洋,张宇磊,刘成良. 基于EWT-LSTM的工业机器人关节异常检测[J]. 浙江大学学报(工学版), 2025, 59(5): 982-994.
[2] 江佳鸿,夏楠,李长吾,于鑫淼. 基于知识共享的遮挡人体姿态估计网络[J]. 浙江大学学报(工学版), 2024, 58(10): 2001-2010.
[3] 王林涛,毛齐. 基于RGB与深度信息融合的管片抓取位置测量方法[J]. 浙江大学学报(工学版), 2023, 57(1): 47-54.
[4] 孙菲,厉小润,赵辽英,余绍奇. 基于FrFT变换和全变分正则化的异常检测算法[J]. 浙江大学学报(工学版), 2022, 56(7): 1276-1284.
[5] 张鹏,田子都,王浩. 基于改进生成对抗网络的飞参数据异常检测方法[J]. 浙江大学学报(工学版), 2022, 56(10): 1967-1976.
[6] 高雪艳,潘安宁,杨扬. 基于图像混合特征的城市绿地遥感图像配准[J]. 浙江大学学报(工学版), 2019, 53(6): 1205-1217.
[7] 刘宇,罗森林,曲乐炜,潘丽敏,张笈. 全特征信息均衡建模的内部威胁人物检测[J]. 浙江大学学报(工学版), 2019, 53(4): 777-784.
[8] 魏媛,冯天恒,黄平捷,侯迪波,张光新. 管网水质多指标动态关联异常检测方法[J]. 浙江大学学报(工学版), 2016, 50(7): 1402-1409.
[9] 杨冰,王小华,杨鑫,黄孝喜. 基于HOG金字塔人脸识别方法[J]. 浙江大学学报(工学版), 2014, 48(9): 1564-1569.
[10] 何慧梅, 侯迪波, 赵海峰, 黄平捷, 张光新. 基于多因子融合的水质异常检测算法[J]. J4, 2013, 47(4): 735-740.
[11] 谢天, 解利军, 宋广华, 郑耀. 基于平面颜色分布的增强现实自然特征注册算法[J]. J4, 2013, 47(12): 2243-2252.
[12] 冯志林, 尹建伟. 喷墨印花纹理图像的单元分解光流场配准算法[J]. J4, 2011, 45(10): 1720-1725.
[13] 刘君 朱善安 贺斌. 基于力学分解原理的断层图像配准算[J]. J4, 2008, 42(9): 1601-1605.
[14] 刘君 朱善安 贺斌. 基于边缘比对的MR-PET配准算法[J]. J4, 2008, 42(4): 627-631.
[15] 于慧敏 廖秀秀. 引入边缘信息度量的自由形变图像配准[J]. J4, 2008, 42(10): 1700-1705.