计算机技术 |
|
|
|
|
基于异常检测的图像特征匹配算法 |
肖剑1( ),武亮亮1,何昕泽1,胡欣2,*( ) |
1. 长安大学 电子与控制工程学院,陕西 西安 710064 2. 长安大学 能源与电气工程学院,陕西 西安 710064 |
|
Image feature matching algorithm based on anomaly detection |
Jian XIAO1( ),Liangliang WU1,Xinze HE1,Xin HU2,*( ) |
1. School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China 2. School of Energy and Electrical Engineering, Chang’an University, Xi’an 710064, China |
引用本文:
肖剑,武亮亮,何昕泽,胡欣. 基于异常检测的图像特征匹配算法[J]. 浙江大学学报(工学版), 2025, 59(6): 1140-1147.
Jian XIAO,Liangliang WU,Xinze HE,Xin HU. Image feature matching algorithm based on anomaly detection. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1140-1147.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.06.005
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I6/1140
|
1 |
MA J, JIANG X, FAN A, et al Image matching from handcrafted to deep features: a survey[J]. International Journal of Computer Vision, 2020, 129 (1): 1- 57
|
2 |
GHAFFARI A, FATEMIZADEH E Image registration based on low rank matrix: rank-regularized SSD[J]. IEEE Transactions on Medical Imaging, 2018, 37 (1): 138- 150
doi: 10.1109/TMI.2017.2744663
|
3 |
高雪艳, 潘安宁, 杨扬 基于图像混合特征的城市绿地遥感图像配准[J]. 浙江大学学报: 工学版, 2019, 53 (6): 1205- 1217 GAO Xueyan, PAN Anning, YANG Yang Urban green space remote sensing image registration using image mixed features[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (6): 1205- 1217
|
4 |
LOWE D G Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91- 110
|
5 |
FISCHLER M A, BOLLES R C Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24 (6): 381- 395
|
6 |
MA J, WU J, ZHAO J, et al Nonrigid point set registration with robust transformation learning under manifold regularization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30 (12): 3584- 3597
doi: 10.1109/TNNLS.2018.2872528
|
7 |
CHUM O, MATAS J. Matching with PROSAC: progressive sample consensus [C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 220–226.
|
8 |
RAGURAM R, CHUM O, POLLEFEYS M, et al USAC: a universal framework for random sample consensus[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (8): 2022- 2038
doi: 10.1109/TPAMI.2012.257
|
9 |
MA J, ZHAO J, TIAN J, et al Robust point matching via vector field consensus[J]. IEEE Transactions on Image Processing, 2014, 23 (4): 1706- 1721
|
10 |
BIAN J W, LIN W Y, LIU Y, et al GMS: grid-based motion statistics for fast, ultra-robust feature correspondence[J]. International Journal of Computer Vision, 2019, 128 (6): 1- 14
|
11 |
MA J, ZHAO J, JIANG J, et al Locality preserving matching[J]. International Journal of Computer Vision, 2019, 127 (5): 512- 531
doi: 10.1007/s11263-018-1117-z
|
12 |
JIANG X, XIA Y, ZHANG X P, et al. Robust image matching via local graph structure consensus [J]. Pattern Recognition, 2022, 126.
|
13 |
XIA Y, MA J Locality-guided global-preserving optimization for robust feature matching[J]. IEEE Transactions on Image Processing, 2022, 31: 5093- 5108
doi: 10.1109/TIP.2022.3192993
|
14 |
MA J, JIANG X, JIANG J, et al Robust feature matching using spatial clustering with heavy outliers[J]. IEEE Transactions on Image Processing, 2019, 29: 736- 746
|
15 |
BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers [C]// ACM SIGMOD International Conference on Management of Data. Dallas: ACM, 2000, 29(2): 93–104.
|
16 |
TANG J, CHEN Z X, FU A W C, et al. Enhancing effectiveness of outlier detections for low density patterns [C]// Pacific-Asia Conference on Knowledge Discovery and Data Mining. Taipei: Springer, 2002, 535–548.
|
17 |
许茂龙, 姜高霞, 王文剑 基于异常检测的标签噪声过滤框架[J]. 计算机科学, 2024, 51 (2): 87- 99 XU Maolong, JIANG Gaoxia, WANG Wenjian Label noise filtering framework based on outlier detection[J]. Computer Science, 2024, 51 (2): 87- 99
doi: 10.11896/jsjkx.221100264
|
18 |
HARTIGAN J A, WONG M A A K-means clustering algorithm[J]. Applied Statistics, 1979, 28 (1): 100- 108
|
19 |
RAMASWAMY S, RASTOGI R, SHIM K. Efficient algorithms for mining outliers from large data sets [C]// ACM SIGMOD International Conference on Management of Data. Dallas: ACM, 2000: 29(2): 427–438.
|
20 |
孔翎超, 刘国柱 离群点检测算法综述[J]. 计算机科学, 2024, 51 (8): 20- 33 KONG Lingchao, LIU Guozhu Review of outlier detection algorithms[J]. Computer Science, 2024, 51 (8): 20- 33
doi: 10.11896/jsjkx.230600052
|
21 |
MIKOLAJCZYK K, TUYTELAARS T, SCHMID C, et al A comparison of affine region detectors[J]. International Journal of Computer Vision, 2005, 65 (1): 43- 72
|
22 |
TOLA E, LEPETIT V, FUA P DAISY: an efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (5): 815- 830
doi: 10.1109/TPAMI.2009.77
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|