机械工程 |
|
|
|
|
基于EWT-LSTM的工业机器人关节异常检测 |
蒋沁诚1( ),陶建峰1,2,*( ),王洋洋1,张宇磊1,2,刘成良1,2 |
1. 上海交通大学 机械与动力工程学院,上海 200240 2. 上海交通大学 机械系统与振动国家重点实验室,上海 200240 |
|
EWT-LSTM based industrial robot joint anomaly detection |
Qincheng JIANG1( ),Jianfeng TAO1,2,*( ),Yangyang WANG1,Yulei ZHANG1,2,Chengliang LIU1,2 |
1. School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
蒋沁诚,陶建峰,王洋洋,张宇磊,刘成良. 基于EWT-LSTM的工业机器人关节异常检测[J]. 浙江大学学报(工学版), 2025, 59(5): 982-994.
Qincheng JIANG,Jianfeng TAO,Yangyang WANG,Yulei ZHANG,Chengliang LIU. EWT-LSTM based industrial robot joint anomaly detection. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 982-994.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.012
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I5/982
|
1 |
YAMADA Y, NAGAMATSU S, SATO Y. Development of multi-arm robots for automobile assembly [C]// Proceedings of IEEE International Conference on Robotics and Automation . Nagoya: IEEE, 1995: 2224-2229.
|
2 |
张康. 工业机器人柔性关节关键子部件健康评估方法研究[D]. 上海: 上海交通大学, 2022. ZHANG Kang. Research on health assessment method of key components of flexible joint of industrial robot [D]. Shanghai: Shanghai Jiao Tong University, 2022.
|
3 |
SPIEWAK S A, DUGGIRALA R, BARNETT K Predictive monitoring and control of the cold extrusion process[J]. CIRP Annals, 2000, 49 (1): 383- 386
doi: 10.1016/S0007-8506(07)62970-9
|
4 |
YANG Bin, GUO Kai, ZHOU Qian, et al Early chatter detection in robotic milling under variable robot postures and cutting parameters[J]. Mechanical Systems and Signal Processing, 2023, 186: 109860
doi: 10.1016/j.ymssp.2022.109860
|
5 |
IZAGIRRE U, ANDONEGUI I, ECIOLAZA L, et al Towards manufacturing robotics accuracy degradation assessment: a vision-based data-driven implementation[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67: 102029
doi: 10.1016/j.rcim.2020.102029
|
6 |
HE Ruikai, XU Peng, CHEN Zhibo, et al A non-intrusive approach for fault detection and diagnosis of water distribution systems based on image sensors, audio sensors and an inspection robot[J]. Energy and Buildings, 2021, 243: 110967
doi: 10.1016/j.enbuild.2021.110967
|
7 |
CHEN Tingting, LIU Xueping, XIA Bizhong, et al Unsupervised anomaly detection of industrial robots using sliding-window convolutional variational autoencoder[J]. IEEE Access, 2020, 8: 47072- 47081
doi: 10.1109/ACCESS.2020.2977892
|
8 |
MUHAMMET O, NEIL D S, ERDEM O. Robotically assisted active vibration control in milling: a feasibility study[J]. Mechanical Systems and Signal Processing, 2022, 177: 109152
|
9 |
QIAO Guixiu, WEISS B A Quick health assessment for industrial robot health degradation and the supporting advanced sensing development[J]. Journal of Manufacturing Systems, 2018, 48: 51- 59
doi: 10.1016/j.jmsy.2018.04.004
|
10 |
潘京辉. 多关节协作机器人故障诊断及容错控制研究[D]. 北京: 北京科技大学, 2023. PAN Jinghui. Fault diagnosis and fault tolerant control of multi-joint cooperative robot [D]. Beijing: University of Science and Technology Beijing, 2023.
|
11 |
GAJULA K, MAREPALLI L K, YAO Xiu, et al Recursive least squares and adaptive Kalman filter-based state and parameter estimation for series arc fault detection on DC microgrids[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10 (4): 4715- 4724
doi: 10.1109/JESTPE.2021.3135409
|
12 |
XIANG Xianbo, YU Caoyang, ZHANG Qin On intelligent risk analysis and critical decision of underwater robotic vehicle[J]. Ocean Engineering, 2017, 140: 453- 465
doi: 10.1016/j.oceaneng.2017.06.020
|
13 |
LIU Yutian, CHEN Jungan. Integrated fault diagnosis method of mobile robot [C]// Theoretical and Mathematical Foundations of Computer Science . Berlin: Springer, 2011: 372-379.
|
14 |
WU You, FU Zhuang, FEI Jian Fault diagnosis for industrial robots based on a combined approach of manifold learning, treelet transform and Naive Bayes[J]. Review of Scientific Instruments, 2020, 91 (1): 015116
doi: 10.1063/1.5118000
|
15 |
FAN Song, ZHANG Limin, WANG Yufeng, et al. Vision-based fault classification for monitoring industrial robot [C]// 37th Chinese Control Conference . Wuhan: IEEE, 2018: 5889-5894.
|
16 |
LI Jimeng, YAO Xifeng, WANG Xiangdong, et al Multiscale local features learning based on BP neural network for rolling bearing intelligent fault diagnosis[J]. Measurement, 2020, 153: 107419
doi: 10.1016/j.measurement.2019.107419
|
17 |
ELANGOVAN K, YOKH K T, MOHAN R E, et al Fault diagnosis of a reconfigurable crawling–rolling robot based on support vector machines[J]. Applied Sciences, 2017, 7 (10): 1025
doi: 10.3390/app7101025
|
18 |
马百腾. 基于EEMD-HT-峭度分析的工业机器人关节电流信号异常检测方法: 2022100920200 [P]. 2022-01-26.
|
19 |
CHENG Fangzhou, RAGHAVAN A, JUNG D, et al. High-accuracy unsupervised fault detection of industrial robots using current signal analysis [C]// IEEE International Conference on Prognostics and Health Management . San Francisco: IEEE, 2019: 1–8.
|
20 |
赵阳. 基于改进经验小波变换的风电机组齿轮箱故障诊断[D]. 北京: 北京交通大学, 2020. ZHAO Yang. Fault diagnosis of wind turbine gearbox based on improved empirical wavelet transform [D]. Beijing: Beijing Jiao Tong University, 2020.
|
21 |
XU Yonggang, ZHANG Kun, MA Chaoyong, et al An improved empirical wavelet transform and its applications in rolling bearing fault diagnosis[J]. Applied Sciences, 2018, 8 (12): 2352
doi: 10.3390/app8122352
|
22 |
庞学丽, 宋坤, 姚红云, 等 基于VMD-ISSA-LSTM的短时交通流预测研究[J]. 现代电子技术, 2024, 47 (8): 31- 36 PANG Xueli, SONG Kun, YAO Hongyun, et al Research on short-term traffic flow prediction based on VMD-ISSA-LSTM[J]. Modern Electronics Technique, 2024, 47 (8): 31- 36
|
23 |
高正. 基于EWT和特征融合的钻机钻杆故障识别研究[D]. 杭州: 浙江大学, 2019. GAO Zheng. Research on fault identification of drill pipe drill based on EWT and feature fusion [D]. Hangzhou: Zhejiang University, 2019.
|
24 |
GILLES J Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61 (16): 3999- 4010
doi: 10.1109/TSP.2013.2265222
|
25 |
龙霞飞, 何志成, 周凌, 等. 基于KOA-CNN-BiLSTM-AM的风电齿轮箱故障诊断研究[EB/OL]. [2025-02-09]. http://kns.cnki.net/kcms/detail/44.1259.TH.20240506.1728.002.html.
|
26 |
马良玉, 吕若萌 用SSA优化CNN-LSTM-SEnet预测模型实现风电机组故障预警[J]. 电力科学与工程, 2024, 40 (6): 1- 10 MA Liangyu, LV Ruomeng Wind turbine fault warning with SSA optimized CNN-LSTM-SEnet prediction model[J]. Electric Power Science and Engineering, 2024, 40 (6): 1- 10
doi: 10.3969/j.ISSN.1672-0792.2024.06.001
|
27 |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate: arXiv: 1409.0473 [EB/OL]. [2024-12-20]. https://formacion.actuarios.org/wp-content/uploads/2024/05/1409.0473-Neural-Machine-Translation-By-Jointly-Learning-To-Align-And-Translate.pdf.
|
28 |
唐宇翔, 陶建峰, 刘成良 盾构机刀盘主驱动电机异常检测与性能评估[J]. 西安交通大学学报, 2023, 57 (10): 132- 142 TANG Yuxiang, TAO Jianfeng, LIU Chengliang Abnormal detection and performance evaluation of main drive motor of shield tunneling machine cutter head[J]. Journal of Xi'an Jiaotong University, 2023, 57 (10): 132- 142
doi: 10.7652/xjtuxb202310013
|
29 |
杨琦, 陈智才 基于EMD和相关系数法的列车滚动轴承故障诊断方法研究[J]. 电力机车与城轨车辆, 2018, 41 (3): 15- 17 YANG Qi, CHEN Zhicai Fault diagnosis method for train rolling bearing based on EMD and CCM[J]. Electric Locomotives and Mass Transit Vehicles, 2018, 41 (3): 15- 17
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|