Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (5): 982-994    DOI: 10.3785/j.issn.1008-973X.2025.05.012
机械工程     
基于EWT-LSTM的工业机器人关节异常检测
蒋沁诚1(),陶建峰1,2,*(),王洋洋1,张宇磊1,2,刘成良1,2
1. 上海交通大学 机械与动力工程学院,上海 200240
2. 上海交通大学 机械系统与振动国家重点实验室,上海 200240
EWT-LSTM based industrial robot joint anomaly detection
Qincheng JIANG1(),Jianfeng TAO1,2,*(),Yangyang WANG1,Yulei ZHANG1,2,Chengliang LIU1,2
1. School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(3316 KB)   HTML
摘要:

针对工业机器人制造企业工业机器人出厂检测场景关节伺服参数异常检测问题和不添加传感器、高准确率和实时性的需求,提出基于经验小波变换(EWT)和长短时记忆网络(LSTM)的检测方法. 构建工业机器人可编程逻辑控制器-智能终端-云服务器一体化关节实时数据采集平台,无须额外添加传感器即可实现关节电流和速度信号的实时采集、存储和传输,在云端进行状态监测和异常检测. 利用EWT分解电流信号以获得特征分量,将光滑的特征分量作为LSTM模型的输入,提高了预测准确性. 针对机器人运动周期中实时信号周期不完整的问题,采用卷积神经网络和注意力机制优化的双向LSTM模型预测补全完整的周期信号,与标准信号特征分量进行差异度量,实现实时异常检测. 采用1组标准伺服参数和24组异常伺服参数进行故障注入实验,验证了利用该方法能够定位异常关节,与注入异常程度有较好的一致性,检测准确率超过90%.

关键词: 工业机器人经验小波变换长短时记忆网络异常检测云边协同    
Abstract:

A novel detection method combining empirical wavelet transform (EWT) with long short-term memory (LSTM) network was proposed in order to address the challenges of joint servo parameter anomaly detection in industrial robot factory inspection scenarios, particularly under the requirements of sensor-free implementation, high accuracy and real-time performance. An integrated PLC-intelligent terminal-cloud server platform was developed for real-time joint data acquisition, enabling sensorless collection, storage and transmission of joint current and speed signals while supporting cloud-based condition monitoring and anomaly detection. EWT was employed to decompose current signals into inherently smooth characteristic components, which were directly fed into the LSTM network as input features to enhance prediction accuracy. A bidirectional LSTM architecture enhanced by convolutional neural networks (CNNs) and attention mechanisms was implemented to reconstruct complete periodic signals in order to resolve incomplete signal cycles during robotic motion. Then these reconstructed signals were compared with standard signal components through difference metrics to achieve real-time anomaly detection. Experimental validation using 1 set of standard servo parameters and 24 sets of abnormal parameters demonstrated that the proposed method achieved precise fault joint localization, maintained strong consistency with injected anomaly severity levels, and reached a detection accuracy exceeding 90%.

Key words: industrial robot    empirical wavelet transform    long short-term memory network    anomaly detection    cloud-edge collaboration
收稿日期: 2024-06-01 出版日期: 2025-04-25
CLC:  TP 242  
基金资助: 上海市人工智能重大专项资助项目(2021SHZDZX0102).
通讯作者: 陶建峰     E-mail: jqc9837@sjtu.edu.cn;jftao@sjtu.edu.cn
作者简介: 蒋沁诚(1998—),男,硕士生,从事工业机器人故障诊断的研究. orcid.org/0009-0006-6808-7597.E-mail:jqc9837@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
蒋沁诚
陶建峰
王洋洋
张宇磊
刘成良

引用本文:

蒋沁诚,陶建峰,王洋洋,张宇磊,刘成良. 基于EWT-LSTM的工业机器人关节异常检测[J]. 浙江大学学报(工学版), 2025, 59(5): 982-994.

Qincheng JIANG,Jianfeng TAO,Yangyang WANG,Yulei ZHANG,Chengliang LIU. EWT-LSTM based industrial robot joint anomaly detection. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 982-994.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.012        https://www.zjujournals.com/eng/CN/Y2025/V59/I5/982

图 1  工业机器人的关节运动控制系统
图 2  LSTM细胞结构
图 3  EWT-LSTM异常检测方法的框架
图 4  工业机器人实时数据采集平台的框架
图 5  标准信号预处理的过程
图 6  CNN-LSTM-Attention模型的架构
层编号描述详细信息输出尺寸
Layer 1InputInput_shape = (12,6)6×12
Layer 2Conv1Dfilters=128, kernel_size=1, activation=ReLU, padding='same'128×12
Layer 3AveragePooling1Dpool_size=4128×3
Layer 4ZeroPadding1Dpadding=(1, 0)128×4
Layer 5Conv1Dfilters=128, kernel_size=1, activation=ReLU, padding='same'128×4
Layer 6AveragePooling1Dpool_size=4128×1
Layer 7Dropout0.2128×1
Layer 8BidirectionalUnits=32, return_sequences=True64×1
Layer 9Dropout0.264×1
Layer 10Permute(2,1)1×64
Layer 11Denselayer_size = 64, activation='softmax'1×64
Layer 12Permute(2,1)64×1
Layer 13Concatenate[Layer 9, Layer 12]128×1
Layer 14Flatten128
Layer 15Denselayer_size = 6, activation='sigmoid'6
表 1  CNN-LSTM-Attention模型的详细信息
图 7  工业机器人关节异常检测试验台的实物图
设备名称型号配置
服务器CPU:Intel(R) Core(TM) i7-7700
CPU @ 3.60 GHz
内存:23.86 GB
硬盘:1.13 TB
系统:CentOS7.4
智能终端型号:NanoPi R6S
主控处理器:瑞芯微RK3588S
内存:8 GB
系统:Ubuntu 22.04
表 2  工业机器人关节异常检测试验台的硬件架构
关节编号伺服参数关节编号伺服参数
1Kp = 40, Ti = 504Kp = 60, Ti = 30
2Kp = 40, Ti = 505Kp = 50, Ti = 50
3Kp = 70, Ti = 506Kp = 70, Ti = 20
表 3  工业机器人各关节的标准伺服参数
实验组编号关节编号伺服参数
11Kp = 10, Ti = 50
21Kp = 25, Ti = 50
31Kp = 55, Ti = 50
41Kp = 70, Ti = 50
52Kp = 10, Ti = 50
62Kp = 25, Ti = 50
72Kp = 55, Ti = 50
82Kp = 70, Ti = 50
93Kp = 10, Ti = 50
103Kp = 25, Ti = 50
113Kp = 40, Ti = 50
123Kp = 55, Ti = 50
134Kp = 10, Ti = 30
144Kp = 25, Ti = 30
154Kp = 40, Ti = 30
164Kp = 70, Ti = 30
175Kp = 10, Ti = 50
185Kp = 25, Ti = 50
195Kp = 60, Ti = 50
205Kp = 70, Ti = 50
216Kp = 10, Ti = 20
226Kp = 25, Ti = 20
236Kp = 40, Ti = 20
246Kp = 55, Ti = 20
表 4  工业机器人各关节异常实验组的伺服参数设置
图 8  关节1标准信号的频域预处理
图 9  关节1标准信号特征分量的提取结果
图 10  模型训练过程中的训练和验证损失
模型MAERMSER2
RF0.053470.059250.87383
SVR0.040510.060910.87467
RNN0.042940.046300.91125
CNN0.035970.040880.93080
LSTM0.031640.036220.95399
seq2seq0.018830.022670.98197
LSTM-Attention0.014540.018630.98782
seq2seq-Attention0.012920.016910.98997
CNN-LSTM-Attention0.006910.008530.99662
表 5  利用时序预测模型预测工业机器人关节信号的评估结果
图 11  模型关节1不同输入预测结果的对比
图 12  利用3种异常检测方法对工业机器人的6个关节进行异常检测得到的结果
关节编号D
相关系数法峰值差异法均方差法
11.12×10?73.656.21×10?4
28.35×10?9108.301.19×10?6
33.77×10?93.101.97×10?2
45.94×10?714.241.00×10?1
51.28×10?81.629.96×10?3
63.29×10?85.261.39×10?3
表 6  工业机器人各关节3个周期异常检测结果的方差
1 YAMADA Y, NAGAMATSU S, SATO Y. Development of multi-arm robots for automobile assembly [C]// Proceedings of IEEE International Conference on Robotics and Automation . Nagoya: IEEE, 1995: 2224-2229.
2 张康. 工业机器人柔性关节关键子部件健康评估方法研究[D]. 上海: 上海交通大学, 2022.
ZHANG Kang. Research on health assessment method of key components of flexible joint of industrial robot [D]. Shanghai: Shanghai Jiao Tong University, 2022.
3 SPIEWAK S A, DUGGIRALA R, BARNETT K Predictive monitoring and control of the cold extrusion process[J]. CIRP Annals, 2000, 49 (1): 383- 386
doi: 10.1016/S0007-8506(07)62970-9
4 YANG Bin, GUO Kai, ZHOU Qian, et al Early chatter detection in robotic milling under variable robot postures and cutting parameters[J]. Mechanical Systems and Signal Processing, 2023, 186: 109860
doi: 10.1016/j.ymssp.2022.109860
5 IZAGIRRE U, ANDONEGUI I, ECIOLAZA L, et al Towards manufacturing robotics accuracy degradation assessment: a vision-based data-driven implementation[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67: 102029
doi: 10.1016/j.rcim.2020.102029
6 HE Ruikai, XU Peng, CHEN Zhibo, et al A non-intrusive approach for fault detection and diagnosis of water distribution systems based on image sensors, audio sensors and an inspection robot[J]. Energy and Buildings, 2021, 243: 110967
doi: 10.1016/j.enbuild.2021.110967
7 CHEN Tingting, LIU Xueping, XIA Bizhong, et al Unsupervised anomaly detection of industrial robots using sliding-window convolutional variational autoencoder[J]. IEEE Access, 2020, 8: 47072- 47081
doi: 10.1109/ACCESS.2020.2977892
8 MUHAMMET O, NEIL D S, ERDEM O. Robotically assisted active vibration control in milling: a feasibility study[J]. Mechanical Systems and Signal Processing, 2022, 177: 109152
9 QIAO Guixiu, WEISS B A Quick health assessment for industrial robot health degradation and the supporting advanced sensing development[J]. Journal of Manufacturing Systems, 2018, 48: 51- 59
doi: 10.1016/j.jmsy.2018.04.004
10 潘京辉. 多关节协作机器人故障诊断及容错控制研究[D]. 北京: 北京科技大学, 2023.
PAN Jinghui. Fault diagnosis and fault tolerant control of multi-joint cooperative robot [D]. Beijing: University of Science and Technology Beijing, 2023.
11 GAJULA K, MAREPALLI L K, YAO Xiu, et al Recursive least squares and adaptive Kalman filter-based state and parameter estimation for series arc fault detection on DC microgrids[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10 (4): 4715- 4724
doi: 10.1109/JESTPE.2021.3135409
12 XIANG Xianbo, YU Caoyang, ZHANG Qin On intelligent risk analysis and critical decision of underwater robotic vehicle[J]. Ocean Engineering, 2017, 140: 453- 465
doi: 10.1016/j.oceaneng.2017.06.020
13 LIU Yutian, CHEN Jungan. Integrated fault diagnosis method of mobile robot [C]// Theoretical and Mathematical Foundations of Computer Science . Berlin: Springer, 2011: 372-379.
14 WU You, FU Zhuang, FEI Jian Fault diagnosis for industrial robots based on a combined approach of manifold learning, treelet transform and Naive Bayes[J]. Review of Scientific Instruments, 2020, 91 (1): 015116
doi: 10.1063/1.5118000
15 FAN Song, ZHANG Limin, WANG Yufeng, et al. Vision-based fault classification for monitoring industrial robot [C]// 37th Chinese Control Conference . Wuhan: IEEE, 2018: 5889-5894.
16 LI Jimeng, YAO Xifeng, WANG Xiangdong, et al Multiscale local features learning based on BP neural network for rolling bearing intelligent fault diagnosis[J]. Measurement, 2020, 153: 107419
doi: 10.1016/j.measurement.2019.107419
17 ELANGOVAN K, YOKH K T, MOHAN R E, et al Fault diagnosis of a reconfigurable crawling–rolling robot based on support vector machines[J]. Applied Sciences, 2017, 7 (10): 1025
doi: 10.3390/app7101025
18 马百腾. 基于EEMD-HT-峭度分析的工业机器人关节电流信号异常检测方法: 2022100920200 [P]. 2022-01-26.
19 CHENG Fangzhou, RAGHAVAN A, JUNG D, et al. High-accuracy unsupervised fault detection of industrial robots using current signal analysis [C]// IEEE International Conference on Prognostics and Health Management . San Francisco: IEEE, 2019: 1–8.
20 赵阳. 基于改进经验小波变换的风电机组齿轮箱故障诊断[D]. 北京: 北京交通大学, 2020.
ZHAO Yang. Fault diagnosis of wind turbine gearbox based on improved empirical wavelet transform [D]. Beijing: Beijing Jiao Tong University, 2020.
21 XU Yonggang, ZHANG Kun, MA Chaoyong, et al An improved empirical wavelet transform and its applications in rolling bearing fault diagnosis[J]. Applied Sciences, 2018, 8 (12): 2352
doi: 10.3390/app8122352
22 庞学丽, 宋坤, 姚红云, 等 基于VMD-ISSA-LSTM的短时交通流预测研究[J]. 现代电子技术, 2024, 47 (8): 31- 36
PANG Xueli, SONG Kun, YAO Hongyun, et al Research on short-term traffic flow prediction based on VMD-ISSA-LSTM[J]. Modern Electronics Technique, 2024, 47 (8): 31- 36
23 高正. 基于EWT和特征融合的钻机钻杆故障识别研究[D]. 杭州: 浙江大学, 2019.
GAO Zheng. Research on fault identification of drill pipe drill based on EWT and feature fusion [D]. Hangzhou: Zhejiang University, 2019.
24 GILLES J Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61 (16): 3999- 4010
doi: 10.1109/TSP.2013.2265222
25 龙霞飞, 何志成, 周凌, 等. 基于KOA-CNN-BiLSTM-AM的风电齿轮箱故障诊断研究[EB/OL]. [2025-02-09]. http://kns.cnki.net/kcms/detail/44.1259.TH.20240506.1728.002.html.
26 马良玉, 吕若萌 用SSA优化CNN-LSTM-SEnet预测模型实现风电机组故障预警[J]. 电力科学与工程, 2024, 40 (6): 1- 10
MA Liangyu, LV Ruomeng Wind turbine fault warning with SSA optimized CNN-LSTM-SEnet prediction model[J]. Electric Power Science and Engineering, 2024, 40 (6): 1- 10
doi: 10.3969/j.ISSN.1672-0792.2024.06.001
27 BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate: arXiv: 1409.0473 [EB/OL]. [2024-12-20]. https://formacion.actuarios.org/wp-content/uploads/2024/05/1409.0473-Neural-Machine-Translation-By-Jointly-Learning-To-Align-And-Translate.pdf.
28 唐宇翔, 陶建峰, 刘成良 盾构机刀盘主驱动电机异常检测与性能评估[J]. 西安交通大学学报, 2023, 57 (10): 132- 142
TANG Yuxiang, TAO Jianfeng, LIU Chengliang Abnormal detection and performance evaluation of main drive motor of shield tunneling machine cutter head[J]. Journal of Xi'an Jiaotong University, 2023, 57 (10): 132- 142
doi: 10.7652/xjtuxb202310013
29 杨琦, 陈智才 基于EMD和相关系数法的列车滚动轴承故障诊断方法研究[J]. 电力机车与城轨车辆, 2018, 41 (3): 15- 17
YANG Qi, CHEN Zhicai Fault diagnosis method for train rolling bearing based on EMD and CCM[J]. Electric Locomotives and Mass Transit Vehicles, 2018, 41 (3): 15- 17
[1] 赵蕴龙,赵敏喆,朱文强,查星宇. 基于轻量化迁移学习的云边协同自然语言处理方法[J]. 浙江大学学报(工学版), 2024, 58(12): 2531-2539.
[2] 郭万金,赵伍端,于苏扬,赵立军,曹雏清. 无先验模型曲面的机器人打磨主动自适应在线轨迹预测方法[J]. 浙江大学学报(工学版), 2023, 57(8): 1655-1666.
[3] 郭万金,赵伍端,利乾辉,赵立军,曹雏清. 基于集成概率模型的变阻抗机器人打磨力控制[J]. 浙江大学学报(工学版), 2023, 57(12): 2356-2366.
[4] 孙菲,厉小润,赵辽英,余绍奇. 基于FrFT变换和全变分正则化的异常检测算法[J]. 浙江大学学报(工学版), 2022, 56(7): 1276-1284.
[5] 张鹏,田子都,王浩. 基于改进生成对抗网络的飞参数据异常检测方法[J]. 浙江大学学报(工学版), 2022, 56(10): 1967-1976.
[6] 马浩然,丁雅斌. 基于双目视觉的激光位移传感器标定方法[J]. 浙江大学学报(工学版), 2021, 55(9): 1634-1642.
[7] 许佳辉,王敬昌,陈岭,吴勇. 基于图神经网络的地表水水质预测模型[J]. 浙江大学学报(工学版), 2021, 55(4): 601-607.
[8] 陈纬奇,王敬昌,陈岭,杨勇勤,吴勇. 基于深度神经网络的多因素感知终端换机预测模型[J]. 浙江大学学报(工学版), 2021, 55(1): 109-115.
[9] 董大钊,徐冠华,高继良,徐月同,傅建中. 基于机器视觉的机器人装配位姿在线校正算法[J]. 浙江大学学报(工学版), 2021, 55(1): 145-152.
[10] 冯毅雄,李康杰,高一聪,郑浩. 面向视觉伺服的工业机器人轮廓曲线角点识别[J]. 浙江大学学报(工学版), 2020, 54(8): 1449-1456.
[11] 郭英杰,顾钒,董辉跃,汪海晋. 压脚压紧力作用下的机器人变形预测和补偿[J]. 浙江大学学报(工学版), 2020, 54(8): 1457-1465.
[12] 毛晨涛,陈章位,张翔,祖洪飞. 基于相对精度指标的机器人运动学校准[J]. 浙江大学学报(工学版), 2020, 54(7): 1316-1324.
[13] 蒲陈阳,刘作军,庞爽,张燕. 知识继承型迭代学习控制的研究与应用[J]. 浙江大学学报(工学版), 2019, 53(7): 1340-1348.
[14] 刘宇,罗森林,曲乐炜,潘丽敏,张笈. 全特征信息均衡建模的内部威胁人物检测[J]. 浙江大学学报(工学版), 2019, 53(4): 777-784.
[15] 陈学军, 杨永明. 采用经验小波变换的风力发电机振动信号消噪[J]. 浙江大学学报(工学版), 2018, 52(5): 988-995.