Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (5): 973-981    DOI: 10.3785/j.issn.1008-973X.2025.05.011
机械工程     
聚二甲基硅氧烷原位固化3D打印装置及工艺
苏炼(),封森文,谢英睿,栾丛丛,姚鑫骅*()
浙江大学 机械工程学院,浙江省三维打印工艺与装备重点实验室,流体动力基础件与机电系统全国重点实验室,浙江 杭州 310027
In-situ curing polydimethylsiloxane 3D printer and process
Lian SU(),Senwen FENG,Yingrui XIE,Congcong LUAN,Xinhua YAO*()
School of Mechanical Engineering, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2237 KB)   HTML
摘要:

针对在聚二甲基硅氧烷(PDMS) 3D打印的前驱体中加入的特定添加剂的缺陷以及PDMS固化时间长的问题,提出基于热场辅助的PDMS原位固化打印新方法,设计搭建原位固化3D打印平台. 通过正交试验获取打印成型平台面与成型面丝材的最优工艺参数组合,基于最优工艺参数组合打印了倾斜结构、仿生结构及Y型气管支架3种典型复杂结构,实现了在打印平台内PDMS制件的原位快速固化成型. 该方法拓展了PDMS及同类热固性材料在复杂结构件打印中的适用性.

关键词: 聚二甲基硅氧烷(PDMS)原位固化3D打印成型工艺    
Abstract:

A new method based on thermal field-assisted in-situ curing and printing of polydimethylsiloxane (PDMS) was proposed in order to address the defects introduced by specific additives in PDMS 3D printing precursors and the prolonged curing time of PDMS. An in-situ curing 3D printing platform was designed and built, and the optimal parameter combination for the printing build platform surface and the forming surface filament was obtained through orthogonal tests to achieve the printing. Three typical complex structures—an inclined structure, a bionic structure, and a Y-shaped tracheal stent—were printed based on these optimized parameters, achieving in-situ rapid curing and forming of the parts in the printing platform. The applicability of PDMS and other similar thermosetting materials in printing complex structural parts was expanded.

Key words: polydimethylsiloxane (PDMS)    in-situ curing    3D printing    molding process
收稿日期: 2024-06-19 出版日期: 2025-04-25
CLC:  TH 122  
基金资助: 国家自然科学基金资助项目(52175278);浙江省自然科学基金资助项目(LGF21H010006).
通讯作者: 姚鑫骅     E-mail: sulian@zju.edu.cn;yaoxinhuame@zju.edu.cn
作者简介: 苏炼(1999—),男,硕士生,从事智能制造的研究. orcid.org/0000-0002-1459-743X. E-mail:sulian@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
苏炼
封森文
谢英睿
栾丛丛
姚鑫骅

引用本文:

苏炼,封森文,谢英睿,栾丛丛,姚鑫骅. 聚二甲基硅氧烷原位固化3D打印装置及工艺[J]. 浙江大学学报(工学版), 2025, 59(5): 973-981.

Lian SU,Senwen FENG,Yingrui XIE,Congcong LUAN,Xinhua YAO. In-situ curing polydimethylsiloxane 3D printer and process. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 973-981.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.011        https://www.zjujournals.com/eng/CN/Y2025/V59/I5/973

图 1  PDMS原位固化3D打印平台
图 2  墨水仓制冷模块制冷框架
图 3  原位固化打印设备隔热层的热仿真结果
图 4  电气驱动控制系统的架构图
性质参数性质参数
组成双组分t2/h48
颜色无色t3/min35
$\lambda $/(W·m?1·K?1)0.27t4/min20
d1.03t5/min10
t1/h1.5Rm/MPa6.7
表 1  Sylgard 184的基本信息
水平试验因素
打印温度A/℃喷嘴气压
B/ kPa
打印速度
C/(mm·min?1)
打印层高
D/mm
118050500.2
22001001000.3
32201501500.4
42402002000.5
52602502500.6
表 2  正交试验因素水平表
图 5  丝材成型平台面与成型面的形貌
试验号试验因素
打印温度
A/℃
喷嘴气压
B/kPa
打印速度
C/(mm·min?1)
打印层高
D/mm
11(180)1(50)1(50)1(0.2)
21(180)2(100)3(150)4(0.5)
31(180)3(150)5(250)2(0.3)
41(180)4(200)2(100)5(0.6)
51(180)5(250)4(200)3(0.4)
62(200)1(50)5(250)4(0.5)
72(200)2(100)2(100)2(0.3)
82(200)3(150)4(200)5(0.6)
92(200)4(200)1(50)3(0.4)
102(200)5(250)3(150)1(0.2)
113(220)1(50)4(200)2(0.3)
123(220)2(100)1(50)5(0.6)
133(220)3(150)3(150)3(0.4)
143(220)4(200)5(250)1(0.2)
153(220)5(250)2(100)4(0.5)
164(240)1(50)3(150)5(0.6)
174(240)2(100)5(250)3(0.4)
184(240)3(150)2(100)1(0.2)
194(240)4(200)4(200)4(0.5)
204(240)5(250)1(50)2(0.3)
215(260)1(50)2(100)3(0.4)
225(260)2(100)4(200)1(0.2)
235(260)3(150)1(50)4(0.5)
245(260)4(200)3(150)2(0.3)
255(260)5(250)5(250)5(0.6)
表 3  工艺参数优化正交试验表
图 6  成型平台面与成型面打印模型
试验因素T1T2T3T4T5
打印温度A1722.151776.171809.352257.481976.60
喷嘴气压B1205.281549.542054.482167.692453.12
打印速度C3258.552041.071461.581099.121212.26
打印层高D1623.942012.341852.691974.691966.45
表 4  成型平台面打印实验的丝高均值与极差
试验因素$ {{\bar{H}_{\mathrm{f1}}}} $$ {{\bar{H}_{\mathrm{f2}}}} $$ {{\bar{H}_{\mathrm{f3}}}} $$ {{\bar{H}_{\mathrm{f4}}}} $$ {{\bar{H}_{\mathrm{f5}}}} $$ {R}_{{{H_{\mathrm{f}}}}} $
打印温度A344.430355.234361.870451.496395.320107.066
喷嘴气压B241.056309.908410.896433.538490.624249.568
打印速度C651.710408.214292.316219.824242.452431.886
打印层高D324.788402.468370.538394.938393.29077.6800
表 4  
图 7  成型平台面打印实验丝高极差分析的折线图
试验因素T1T2T3T4T5
打印温度A5688.775653.565728.085379.264972.49
喷嘴气压B3591.974870.905672.786413.766665.02
打印速度C6911.826215.485393.433514.454155.25
打印层高D5827.135389.145425.975362.335209.86
表 5  成型平台面打印实验的丝宽均值与极差
试验因素$ {{\bar{W}_{\mathrm{f1}}}} $$ {{\bar{W}_{\mathrm{f2}}}} $$ {{\bar{W}_{\mathrm{f3}}}} $$ {{\bar{W}_{\mathrm{f4}}}} $$ {{\bar{W}_{\mathrm{f5}}}} $$ {R}_{{{W_{\mathrm{f}}}}} $
打印温度A1137.751130.711145.621075.85994.498151.118
喷嘴气压B718.394974.1801134.561282.751333.00614.610
打印速度C1382.361243.101078.69702.890831.050679.474
打印层高D1165.431077.831085.191072.471041.97123.454
表 5  
图 8  成型平台面打印实验的丝宽极差分析折线图
试验因素T1T2T3T4T5
打印温度A1825.601842.871865.622136.591994.33
喷嘴气压B1329.881583.532035.742266.902514.84
打印速度C2994.992066.991722.261149.201402.34
打印层高D1849.582020.031868.372076.581916.32
表 6  成型面打印实验的丝高均值与极差
试验因素$ {{\bar{H}_{\mathrm{s1}}}} $$ {{\bar{H}_{\mathrm{s2}}}} $$ {{\bar{H}_{\mathrm{s3}}}} $$ {{\bar{H}_{\mathrm{s4}}}} $$ {{\bar{H}_{\mathrm{s5}}}} $$ {R}_{{{H}}_{\mathrm{s}}} $
打印温度A365.121368.574373.124427.317398.86662.1966
喷嘴气压B265.976316.706407.148453.379502.967236.991
打印速度C598.998413.397344.452229.840280.468369.158
打印层高D369.916404.005373.674415.317383.26545.4006
表 6  
图 9  成型面打印实验的丝高极差分析折线图
试验因素T1T2T3T4T5
打印温度A5186.445490.325516.995342.224546.84
喷嘴气压B3840.884380.985187.585919.576444.41
打印速度C7704.895476.914812.743204.733673.40
打印层高D5216.435463.924915.235271.654906.18
表 7  成型面打印实验的丝宽均值与极差
试验因素$ {{\bar{W}_{\mathrm{s1}}}} $$ {{\bar{W}_{\mathrm{s2}}}} $$ {{\bar{W}_{\mathrm{s3}}}} $$ {{\bar{W}_{\mathrm{s4}}}} $$ {{\bar{W}_{\mathrm{s5}}}} $$ {R}_{{{W}}_{\mathrm{s}}} $
打印温度A1037.291098.061103.401068.44909.368194.031
喷嘴气压B768.176876.1961037.511183.911288.88520.705
打印速度C1540.981095.38962.548640.946734.680900.032
打印层高D1043.291092.78983.0471054.33981.235111.549
表 7  
图 10  成型面打印实验的丝宽极差分析折线图
图 11  PDMS原位固化倾斜结构打印件的样貌
图 12  PDMS原位固化仿生结构打印的样貌
图 13  PDMS原位固化Y型气管支架的样貌
1 MIRANDA I, SOUZA A, SOUSA P, et al Properties and applications of PDMS for biomedical engineering: a review[J]. Journal of Functional Biomaterials, 2021, 13 (1): 2
doi: 10.3390/jfb13010002
2 LARMAGNAC A, EGGENBERGER S, JANOSSY H, et al Stretchable electronics based on Ag-PDMS composites[J]. Scientific Reports, 2014, 4 (1): 7254
doi: 10.1038/srep07254
3 ARIATI R, SALES F, SOUZA A, et al Polydimethylsiloxane composites characterization and its applications: a review[J]. Polymers, 2021, 13 (23): 4258
doi: 10.3390/polym13234258
4 PHAN H P, ZHONG Y, NGUYEN T K, et al Long-lived, transferred crystalline silicon carbide nanomembranes for implantable flexible electronics[J]. ACS Nano, 2019, 13 (10): 11572- 11581
doi: 10.1021/acsnano.9b05168
5 YADHURAJ S R, GANDLA S B, OMPRAKASH S S, et al Design and development of micro-channel using PDMS for biomedical applications[J]. Materials Today: Proceedings, 2018, 5 (10): 21392- 21397
doi: 10.1016/j.matpr.2018.06.545
6 POTRICH C, LUNELLI L, COCUZZA M, et al Simple PDMS microdevice for biomedical applications[J]. Talanta, 2019, 19: 44- 50
7 WANG X, YANG B, TAN D, et al Bioinspired footed soft robot with unidirectional all-terrain mobility[J]. Materials Today, 2020, 35: 42- 49
doi: 10.1016/j.mattod.2019.12.028
8 REHMAN T, NAFEA M, FAUDZI A A, et al PDMS-based dual-channel pneumatic micro-actuator[J]. Smart Materials and Structures, 2019, 28 (11): 115044
doi: 10.1088/1361-665X/ab4ac1
9 UNKOVSKIY A, SPINTZYK S, BROM J, et al Direct 3D printing of silicone facial prostheses: a preliminary experience in digital workflow[J]. The Journal of prosthetic dentistry, 2018, 120 (2): 303- 308
doi: 10.1016/j.prosdent.2017.11.007
10 LIU J, YE L, SUN Y, et al Elastic superhydrophobic and photocatalytic active films used as blood repellent dressing[J]. Advanced Materials, 2020, 32 (11): 1908008
doi: 10.1002/adma.201908008
11 WANG Z, GAO W, ZHANG Q, et al 3D-printed graphene/polydimethylsiloxane composites for stretchable and strain-insensitive temperature sensors[J]. ACS Applied Materials and Interfaces, 2018, 11 (1): 1344- 1352
12 ABSHIRINI M, CHARARA M, LIU Y, et al 3D printing of highly stretchable strain sensors based on carbon nanotube nanocomposites[J]. Advanced Engineering Materials, 2018, 20 (10): 1800425
doi: 10.1002/adem.201800425
13 SHI G, LOWE S E, TEO A J T, et al A versatile PDMS submicrobead/graphene oxide nanocomposite ink for the direct ink writing of wearable micron-scale tactile sensors[J]. Applied Materials Today, 2019, 16: 482- 492
doi: 10.1016/j.apmt.2019.06.016
[1] 赵俊键,梁腾,詹良通,梁钧,陈延博,赵宇,陈云敏. 基于渗透原理的可吸水模型根系研发与性能研究[J]. 浙江大学学报(工学版), 2023, 57(7): 1382-1392.
[2] 林泽宁,蒋涛,尚建忠,杨云,洪阳,罗自荣. 生物墨水挤出打印成型精度评价方法概述[J]. 浙江大学学报(工学版), 2023, 57(4): 643-656.
[3] 白永健,陈赟,张思,陈康,苏世杰. 熔融沉积成型3D打印拉丝缺陷的正交实验研究[J]. 浙江大学学报(工学版), 2022, 56(10): 2093-2103.
[4] 谭博军,陈斌,刘亚静,汪伟,李子森,汪营磊,肖川. 火炸药光固化3D打印成型[J]. 浙江大学学报(工学版), 2021, 55(8): 1594-1606.
[5] 白大鹏,张斌,洪昊岑,李洋,季清华,杨华勇. 生物3D打印装置及打印模型形貌检测[J]. 浙江大学学报(工学版), 2021, 55(2): 289-298.
[6] 张静,邹道勤,王海龙,孙晓燕. 3D打印混凝土层条间界面抗拉性能与本构模型[J]. 浙江大学学报(工学版), 2021, 55(11): 2178-2185.
[7] 孙晓燕,唐归,王海龙,汪群,张治成. 3D打印路径对混凝土拱桥结构力学性能的影响[J]. 浙江大学学报(工学版), 2020, 54(11): 2085-2091.
[8] 高阳,方成刚,蒋贤辉. 水泥3D打印喷头中浆体的流动分析[J]. 浙江大学学报(工学版), 2019, 53(3): 420-426.
[9] 贺永,高庆,刘安,孙苗,傅建中. 生物3D打印——从形似到神似[J]. 浙江大学学报(工学版), 2019, 53(3): 407-419.
[10] 邵惠锋, 贺永, 傅建中. 增材制造可降解人工骨的研究进展——从外形定制到性能定制[J]. 浙江大学学报(工学版), 2018, 52(6): 1035-1057.
[11] 吴海曦,余忠华,张浩,杨振生,WANG Yan. 面向熔融沉积成型的3D打印机故障声发射监控方法[J]. 浙江大学学报(工学版), 2016, 50(1): 78-84.