机械工程 |
|
|
|
|
聚二甲基硅氧烷原位固化3D打印装置及工艺 |
苏炼( ),封森文,谢英睿,栾丛丛,姚鑫骅*( ) |
浙江大学 机械工程学院,浙江省三维打印工艺与装备重点实验室,流体动力基础件与机电系统全国重点实验室,浙江 杭州 310027 |
|
In-situ curing polydimethylsiloxane 3D printer and process |
Lian SU( ),Senwen FENG,Yingrui XIE,Congcong LUAN,Xinhua YAO*( ) |
School of Mechanical Engineering, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China |
引用本文:
苏炼,封森文,谢英睿,栾丛丛,姚鑫骅. 聚二甲基硅氧烷原位固化3D打印装置及工艺[J]. 浙江大学学报(工学版), 2025, 59(5): 973-981.
Lian SU,Senwen FENG,Yingrui XIE,Congcong LUAN,Xinhua YAO. In-situ curing polydimethylsiloxane 3D printer and process. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 973-981.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.011
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I5/973
|
1 |
MIRANDA I, SOUZA A, SOUSA P, et al Properties and applications of PDMS for biomedical engineering: a review[J]. Journal of Functional Biomaterials, 2021, 13 (1): 2
doi: 10.3390/jfb13010002
|
2 |
LARMAGNAC A, EGGENBERGER S, JANOSSY H, et al Stretchable electronics based on Ag-PDMS composites[J]. Scientific Reports, 2014, 4 (1): 7254
doi: 10.1038/srep07254
|
3 |
ARIATI R, SALES F, SOUZA A, et al Polydimethylsiloxane composites characterization and its applications: a review[J]. Polymers, 2021, 13 (23): 4258
doi: 10.3390/polym13234258
|
4 |
PHAN H P, ZHONG Y, NGUYEN T K, et al Long-lived, transferred crystalline silicon carbide nanomembranes for implantable flexible electronics[J]. ACS Nano, 2019, 13 (10): 11572- 11581
doi: 10.1021/acsnano.9b05168
|
5 |
YADHURAJ S R, GANDLA S B, OMPRAKASH S S, et al Design and development of micro-channel using PDMS for biomedical applications[J]. Materials Today: Proceedings, 2018, 5 (10): 21392- 21397
doi: 10.1016/j.matpr.2018.06.545
|
6 |
POTRICH C, LUNELLI L, COCUZZA M, et al Simple PDMS microdevice for biomedical applications[J]. Talanta, 2019, 19: 44- 50
|
7 |
WANG X, YANG B, TAN D, et al Bioinspired footed soft robot with unidirectional all-terrain mobility[J]. Materials Today, 2020, 35: 42- 49
doi: 10.1016/j.mattod.2019.12.028
|
8 |
REHMAN T, NAFEA M, FAUDZI A A, et al PDMS-based dual-channel pneumatic micro-actuator[J]. Smart Materials and Structures, 2019, 28 (11): 115044
doi: 10.1088/1361-665X/ab4ac1
|
9 |
UNKOVSKIY A, SPINTZYK S, BROM J, et al Direct 3D printing of silicone facial prostheses: a preliminary experience in digital workflow[J]. The Journal of prosthetic dentistry, 2018, 120 (2): 303- 308
doi: 10.1016/j.prosdent.2017.11.007
|
10 |
LIU J, YE L, SUN Y, et al Elastic superhydrophobic and photocatalytic active films used as blood repellent dressing[J]. Advanced Materials, 2020, 32 (11): 1908008
doi: 10.1002/adma.201908008
|
11 |
WANG Z, GAO W, ZHANG Q, et al 3D-printed graphene/polydimethylsiloxane composites for stretchable and strain-insensitive temperature sensors[J]. ACS Applied Materials and Interfaces, 2018, 11 (1): 1344- 1352
|
12 |
ABSHIRINI M, CHARARA M, LIU Y, et al 3D printing of highly stretchable strain sensors based on carbon nanotube nanocomposites[J]. Advanced Engineering Materials, 2018, 20 (10): 1800425
doi: 10.1002/adem.201800425
|
13 |
SHI G, LOWE S E, TEO A J T, et al A versatile PDMS submicrobead/graphene oxide nanocomposite ink for the direct ink writing of wearable micron-scale tactile sensors[J]. Applied Materials Today, 2019, 16: 482- 492
doi: 10.1016/j.apmt.2019.06.016
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|