能源工程、机械工程 |
|
|
|
|
熔融沉积成型3D打印拉丝缺陷的正交实验研究 |
白永健1( ),陈赟1,2,*( ),张思1,陈康1,苏世杰1,2 |
1. 江苏科技大学 机械工程学院,江苏 镇江 212003 2. 江苏省船海机械装备先进制造重点实验室,江苏 镇江 212003 |
|
Orthogonal experiment of fused deposition molding 3D printing drawing defects |
Yong-jian BAI1( ),Yun CHEN1,2,*( ),Si ZHANG1,Kang CHEN1,Shi-jie SU1,2 |
1. School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China 2. Jiangsu Key Laboratory of Advanced Manufacturing for Marine Machinery and Equipment, Zhenjiang 212003, China |
引用本文:
白永健,陈赟,张思,陈康,苏世杰. 熔融沉积成型3D打印拉丝缺陷的正交实验研究[J]. 浙江大学学报(工学版), 2022, 56(10): 2093-2103.
Yong-jian BAI,Yun CHEN,Si ZHANG,Kang CHEN,Shi-jie SU. Orthogonal experiment of fused deposition molding 3D printing drawing defects. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2093-2103.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.10.021
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I10/2093
|
1 |
CALIGNANO F, MANFREDI D, AMBROSIO E P, et al Overview on additive manufacturing technologies[J]. Proceedings of the IEEE, 2017, 105 (4): 1- 20
doi: 10.1109/JPROC.2017.2676643
|
2 |
COOKE S, AHMADI K, WILLERTH S, et al Metal additive manufacturing: technology, metallurgy and modeling[J]. Journal of Manufacturing Processes, 2020, 57 (2): 978- 1003
|
3 |
卢秉恒 增材制造技术: 现状与未来[J]. 中国机械工程, 2020, 31 (1): 19- 23 LU Bing-heng Additive manufacturing technology: status quo and future[J]. China Mechanical Engineering, 2020, 31 (1): 19- 23
|
4 |
胡美娟, 吉玲康, 马秋荣, 等 激光增材制造技术及现状研究[J]. 石油管材与仪器, 2019, 5 (5): 1- 6 HU Mei-juan, JI Ling-kang, MA Qiu-rong, et al Research on laser additive manufacturing technology and present situation[J]. Oil Pipes and Instruments, 2019, 5 (5): 1- 6
|
5 |
HAO B, LIN G 3D printing technology and its application in industrial manufacturing[J]. IOP Conference Series Materials Science and Engineering, 2020, 782: 022065
doi: 10.1088/1757-899X/782/2/022065
|
6 |
张静, 邹道勤, 王海龙, 等 3D打印混凝土层条间界面抗拉性能与本构模型[J]. 浙江大学学报: 工学版, 2021, 55 (11): 2178- 2185 ZHANG Jing, ZOU Dao-qin, WANG Hai-long, et al Tensile performance and constitutive model of interface between 3D printed concrete layers[J]. Journal of Zhejiang University: Engineering Science Edition, 2021, 55 (11): 2178- 2185
|
7 |
顾冬冬, 张红梅, 陈洪宇, 等 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47 (5): 32- 55 GU Dong-dong, ZHANG Hong-mei, CHEN Hong-yu, et al Laser additive manufacturing of high-performance metal material components in aerospace[J]. China Laser, 2020, 47 (5): 32- 55
|
8 |
THOMAS D J, SINGH D 3D printing for developing patient specific cosmetic prosthetics at the point of care[J]. International Journal of Surgery, 2020, 12 (4): 36- 39
|
9 |
LE-BAIL A, MANIGLIA B C, LE-BAIL P Recent advances and future perspective in additive manufacturing of foods based on 3D printing[J]. Current Opinion in Food Science, 2020, 35: 54- 64
doi: 10.1016/j.cofs.2020.01.009
|
10 |
NUCHITPRASITCHAI S, ROGGEMANN M, PEARCE J M Factors effecting real-time optical monitoring of fused filament 3D printing[J]. Progress in Additive Manufacturing, 2017, 2 (3): 133- 149
doi: 10.1007/s40964-017-0027-x
|
11 |
TLEGENOV Y, LU W F, HONG G S A dynamic model for current-based nozzle condition monitoring in fused deposition modeling[J]. Progress in Additive Manufacturing, 2019, 4 (4): 211- 223
|
12 |
WONJOON M, SEIHWAN K, BUMSOON L, et al Dimensional accuracy evaluation of temporary dental restorations with different 3D printing systems[J]. Materials, 2021, 14 (6): 1487
doi: 10.3390/ma14061487
|
13 |
MOUSTAPHA J, FARBOD K Improving geometric accuracy of 3D printed parts using 3D metrology feedback and mesh morphing[J]. Journal of Manufacturing and Materials Processing, 2020, 4 (4): 112
doi: 10.3390/jmmp4040112
|
14 |
AFROSE M F, MASOOD S H, IOVENITTI P, et al Effects of part build orientations on fatigue behaviour of FDM-processed PLA material[J]. Progress in Additive Manufacturing, 2016, 1 (1-2): 21- 28
doi: 10.1007/s40964-015-0002-3
|
15 |
WU H, WANG Y, YU Z In situ monitoring of FDM machine condition via acoustic emission[J]. International Journal of Advanced Manufacturing Technology, 2016, 84 (5-8): 1483- 1495
|
16 |
潘俊锋, 任豪, 李康业, 等 熔融层积成型(FDM)3D打印中切片参数对拉丝现象的工艺影响研究[J]. 机电工程技术, 2019, 48 (6): 16- 17 PAN Jun-feng, REN Hao, LI Kang-ye, et al Effect of slice parameters on wiredrawing phenomenon in FDM 3D printing[J]. Mechanical and Electrical Engineering Technology, 2019, 48 (6): 16- 17
doi: 10.3969/j.issn.1009-9492.2019.06.005
|
17 |
王微, 阚玉锦, 王宏琴, 等 FDM 3D打印参数对打印件精度的影响研究[J]. 佳木斯大学学报: 自然科学版, 2019, 37 (1): 123- 125 WANG Wei, KAN Yu-jin, WANG Hong-qin, et al Study on the influence of FDM 3D printing parameters on the precision of printing parts[J]. Journal of Jiamusi University: Natural Science Edition, 2019, 37 (1): 123- 125
|
18 |
刘晓伟, 陈赟, 张思, 等 FDM型增材制造中送丝机构动态监测与识别[J]. 浙江大学学报: 工学版, 2021, 55 (3): 548- 554 LIU Xiao-wei, CHEN Yun, ZHANG Si, et al Dynamic monitoring and identification of wire feeding mechanism in FDM type additive manufacturing[J]. Journal of Zhejiang University: Engineering Science Edition, 2021, 55 (3): 548- 554
|
19 |
武立平, 马维青, 程胤璋, 等 基于振动信号指标能量的变压器机械故障检测[J]. 电测与仪表, 2020, 57 (6): 126- 131 WU Li-ping, MA Wei-qing, CHENG Yin-zhang, et al Transformer mechanical fault detection based on vibration signal index energy[J]. Electrical Measurement and Instrumentation, 2020, 57 (6): 126- 131
doi: 10.19753/j.issn1001-1390.2020.06.020
|
20 |
张霄宇. 基于振动测试系统的3D打印机优化技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. ZHANG Xiao-yu. Research on optimization technology of 3D printer based on vibration test system [D]. Harbin: Harbin Institute of Technology, 2016.
|
21 |
王南, 赵乘康, 崔国华, 等 基于正交试验的并联机构刚度回归模型求解分析[J]. 北京工业大学学报, 2013, 39 (12): 1798- 1803 WANG Nan, ZHAO Cheng-kang, CUI Guo-hua, et al Solving and analysis of stiffness regression model of parallel mechanism based on orthogonal test[J]. Journal of Beijing University of Technology, 2013, 39 (12): 1798- 1803
doi: 10.11936/bjutxb2013121798
|
22 |
贾超, 张凯, 张强勇, 等 基于正交试验设计的层状盐岩地下储库群多因素优化研究[J]. 岩土力学, 2014, 35 (6): 1718- 1726 JIA Chao, ZHANG Kai, ZHANG Qiang-yong, et al Multi-factor optimization of layered salt rock underground storage group based on orthogonal experimental design[J]. Rock and Soil Mechanics, 2014, 35 (6): 1718- 1726
doi: 10.16285/j.rsm.2014.06.015
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|