Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (11): 2085-2091    DOI: 10.3785/j.issn.1008-973X.2020.11.003
土木工程     
3D打印路径对混凝土拱桥结构力学性能的影响
孙晓燕1(),唐归1,王海龙1,*(),汪群2,张治成1
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 浙江绿城建筑设计有限公司,浙江 杭州 310007
Effect of 3D printing path on mechanical properties of arch concrete bridge
Xiao-yan SUN1(),Gui TANG1,Hai-long WANG1,*(),Qun WANG2,Zhi-cheng ZHANG1
1. School of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Greentown Architectural Design Co. Ltd, Hangzhou 310007, China
 全文: PDF(1562 KB)   HTML
摘要:

为了分析打印路径对3D打印混凝土拱桥力学性能的影响机制,采用CT技术对3D打印混凝土进行微观扫描分析,探讨打印路径对成型后结构孔隙空间分布的影响规律,得到层间、条间缺陷层的近似孔隙率.基于数值模拟分析,对比纵向打印、组合打印、横向打印以及浇筑对混凝土拱桥结构承载性能的影响规律. 结果表明:打印路径直接影响层间缺陷和条间缺陷的数量和分布,打印拱结构的承载能力与打印体的孔隙率线性相关. 条间缺陷对承载能力的影响明显大于层间. 纵向打印路径数值模拟与模型试验结果吻合良好,峰值荷载相对误差为8.0%,跨中位移相对误差为11.9%,破坏形态与失效位置一致. 对于拱桥结构,纵向打印的缺陷类型以层间为主,且缺陷层总面积最小,承载力性能最好.

关键词: 3D打印混凝土拱桥承载性能CT扫描    
Abstract:

The CT scanning technology was adopted to analyze the microstructure of a 3D printed concrete in order to figure out the influence of printing path on the mechanical properties of the 3D printed concrete arch bridge. The effect of printing path on the pore distribution of printed arch structure was investigated, and the approximate porosities of interlayer and inter-strip were obtained on the basis of canned images. Based on the fine finite element numerical simulation analysis, the effects of lengthwise printing, combination printing and horizontal printing on the bearing capacity were obtained and compared with that of cast-in-place concrete arch. The results show that the printing path has a direct effect on the distribution and the number of defects in the interlayers and strip layers. The amount of inter-strip defects is obviously lager than that in interlayers. The bearing capacity of printed arch is linearly related with the porosity of printed concrete. The lengthwise printing concrete arches were tested, the numerical simulation had a good agreement with the experimental result. The relative error of peak load was 8.0%, the relative error of mid span displacement was 11.9%, and the failure mode and failure position were consistent with the test results. For the lengthwise printed arch, the dominant defect originates from the interlayer, resulting the smallest defect area and largest bearing capacity.

Key words: 3D printing    concrete    arch bridge    bearing capacity    CT scanning
收稿日期: 2019-09-23 出版日期: 2020-12-15
CLC:  TU 375  
基金资助: 国家自然科学基金资助项目(52079123)
通讯作者: 王海龙     E-mail: selina@zju.edu.cn;hlwang@zju.edu.cn
作者简介: 孙晓燕(1976—),女,副教授,从事混凝土桥梁结构及智能建造技术研究. orcid.org/0000-0003-0708-9565. E-mail: selina@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
孙晓燕
唐归
王海龙
汪群
张治成

引用本文:

孙晓燕,唐归,王海龙,汪群,张治成. 3D打印路径对混凝土拱桥结构力学性能的影响[J]. 浙江大学学报(工学版), 2020, 54(11): 2085-2091.

Xiao-yan SUN,Gui TANG,Hai-long WANG,Qun WANG,Zhi-cheng ZHANG. Effect of 3D printing path on mechanical properties of arch concrete bridge. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2085-2091.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.11.003        http://www.zjujournals.com/eng/CN/Y2020/V54/I11/2085

图 1  打印路径及打印成型混凝土层−条界面示意图
图 2  打印混凝土扫描与三维模型重构
图 3  3D打印混凝土的空间孔隙分布
图 4  拱桥模型尺寸
图 5  混凝土拱桥结构模型工况设置
区域 V/mm3 Po /% VP /mm3
层间缺陷 30 324 5 1 516
条间缺陷 8 960 8 717
非缺陷区 200 716 2.57 5 158
整体 240 000 3.08 7 391
表 1  打印混凝土数值分析的层条缺陷取值
图 6  层间缺陷和条间缺陷模拟分布
图 7  数值模拟所用的材料本构关系
工况 Nn Ne
浇筑模型 91 564 19 822
纵向打印 65 242 23 141
组合打印 81 814 28 627
横向打印 118 846 36 442
表 2  数值模拟模型中单元节点数和单元数
图 8  不同打印路径成型拱桥单元划分图
图 9  3D打印混凝土拱试验模型
图 10  模型试验与数值模拟的拱桥荷载−跨中位移曲线
图 11  数值模拟与模型试验的拱桥破坏形态对比
图 12  不同成型方式下拱体的荷载−跨中位移曲线
图 13  3D打印拱结构承载性能变化
图 14  不同成型方式拱桥结构最大主应力云图
1 肖绪文, 马荣全, 田伟 3D打印建造研发现状及发展战略[J]. 施工技术, 2017, 46 (1): 5- 8
XIAO Xu-wen, MA Rong-quan, TIAN Wei State and development strategy for 3D printing construction technology[J]. Construction Technology, 2017, 46 (1): 5- 8
2 崔小芳 分析3D打印技术在建筑施工中的应用趋势[J]. 建筑技术开发, 2017, 44 (21): 5- 6
CUI Xiao-fang Analyze application trend of 3D printing technology in construction[J]. Building Information, 2017, 44 (21): 5- 6
doi: 10.3969/j.issn.1001-523X.2017.21.003
3 祝云, 陈景, 刘东, 等 混凝土3D打印技术研究与应用现状[J]. 商品混凝土, 2018, (11): 19- 22
ZHU Yun, CHEN Jing, LIU Dong, et al Research and application of concrete 3D printing technology[J]. Ready-Mixed Concrete, 2018, (11): 19- 22
4 WENG Y, LI M, TAN M, et al Design 3D printing cementitious materials via Fuller Thompson theory and Marson-Percy model[J]. Construction and Building Materials, 2018, 163: 600- 610
doi: 10.1016/j.conbuildmat.2017.12.112
5 MA G W, WANG L, YANG J State-of-the-art of 3D printingtechnology of cementitious material: an emerging technique for construction[J]. Science China Technological Sciences, 2017, 60 (4): 475- 495
6 PANDA B, PAUL S C, AHAMED N, et al Measurement of tensile bond strength of 3D printed geopolymer mortar[J]. Measurement, 2018, 113: 108- 116
doi: 10.1016/j.measurement.2017.08.051
7 MA G, LI Z, WANG L Printable properties of cementitious material containing copper tailings for extrusion based 3D printing[J]. Construction and Building Materials, 2018, 162: 613- 627
doi: 10.1016/j.conbuildmat.2017.12.051
8 孙晓燕, 乐凯笛, 王海龙, 等 挤出形状尺寸对 3D 打印砼力学性能影响研究[J]. 建筑材料学报, 2020, (4): 1- 12
SUN Xiao-yan, LE Kai-di, WANG Hai-long, et al Effects of extruded strip's shapes and dimensions on the mechanical properties of 3D printed concrete[J]. Journal of building materials, 2020, (4): 1- 12
9 LE T T, AUSTIN S A, LIM S, et al Mix design and fresh properties for high-performance printing concrete[J]. Materials and Structures, 2012, 45 (8): 1221- 1232
doi: 10.1617/s11527-012-9828-z
10 PAUL S C, YI W, PANDA B, et al Fresh and hardened properties of 3D printable cementitious materials for building and construction[J]. Archives of Civil and Mechanical Engineering, 2018, 18 (1): 311- 319
11 NERELLA V N, KRAUSE M, NATHER M, et al. Studying printability of fresh concrete for formwork free Concrete on-site 3D Printing technology[C] // 25th Conference on Rheology of Building Materials. Regensburg: [s.n.], 2016: 2-3.
12 LE T T, AUSTIN S A, LIM S Hardened properties of high-performance printing concrete[J]. Cement and Concrete Research, 2012, 42 (3): 558- 566
13 LIM S, BUSWELL R A, LE T T, et al Developments in construction-scale additive manufacturing processes[J]. Automation in Construction, 2012, 21 (1): 262- 268
14 ZHANG Y, ZHANG Y S, LIU G J, et al Fresh properties of a novel 3D printing concrete ink[J]. Construction and Building Materials, 2018, 174: 263- 271
doi: 10.1016/j.conbuildmat.2018.04.115
15 蔺喜强, 张涛, 霍亮, 等 水泥基建筑3D打印材料的制备及应用研究[J]. 混凝土, 2016, (6): 141- 144
LIN Xi-qiang, ZHANG Tao, HUO Liang, et al Preparation and application of 3D printing materials in construction[J]. Concrete, 2016, (6): 141- 144
doi: 10.3969/j.issn.1002-3550.2016.06.037
16 HAMBACH M, VOLKMER D Properties of 3D-printed fiber-reinforced Portland cement paste[J]. Cement and Concrete Composites, 2017, 79: 62- 70
doi: 10.1016/j.cemconcomp.2017.02.001
17 FENG P, MENG X M, CHEN J F, et al Mechanical properties of structures 3D printed with cementitious powders[J]. Construction and Building Materials, 2015, 93: 486- 497
doi: 10.1016/j.conbuildmat.2015.05.132
18 汪群. 3D打印混凝土拱桥结构关键技术研究[D]. 杭州: 浙江大学, 2019: 39-45.
WANG Qun. Research on the pivotal technology of 3D printed concrete arch bridge [D]. Hangzhou: Zhejiang University, 2019: 39-45.
19 GOSSELIN C, DUBALLET R, ROUX P, et al Large-scale 3D printing of ultra-high performance concrete-new processing route for architects and builders[J]. Materials and Design, 2016, 100: 102- 109
doi: 10.1016/j.matdes.2016.03.097
20 MECHTCHERINE V, GRAFE J, NERELLA V N, et al 3D-printed steel reinforcement for digital concrete construction manufacture, mechanical properties and bond behavior[J]. Construction and Building Materials, 2018, 179: 125- 137
doi: 10.1016/j.conbuildmat.2018.05.202
21 邓朝莉, 李宗利 孔隙率对混凝土力学性能影响的试验研究[J]. 混凝土, 2016, 321 (7): 41- 44
DENG Chao-li, LI Zong-li Experimental study on mechanical properties of concrete with porosity[J]. Concrete, 2016, 321 (7): 41- 44
doi: 10.3969/j.issn.1002-3550.2016.07.011
22 杜修力, 金浏 考虑孔隙及微裂纹影响的混凝土宏观力学特性研究[J]. 工程力学, 2012, 29 (8): 101- 107
DU Xiu-li, JIN Liu Research on the influence of pores and micro-cracks on the macro-mechanical properties of concrete[J]. Engineering Mechanics, 2012, 29 (8): 101- 107
doi: 10.6052/j.issn.1000-4750.2010.10.0742
23 范庆华. 2×90 m多拱肋式钢筋混凝土拱桥荷载试验及承载能力评估[D]. 长春: 吉林大学, 2013: 37-39.
FAN Qing-hua. Load test and carrying capacity evaluation of 2×90 meter multi-rib reinforced concrete arch bridge [D]. Changchun: Jilin University, 2013: 37-39.
24 王杰 既有混凝土双曲拱桥的裂缝产生分析[J]. 宁夏工程技术, 2014, 13 (3): 258- 261
WANG Jie Analysis of crack producing in existing reinforced concrete double-curved arch bridges[J]. Ningxia Engineering Technology, 2014, 13 (3): 258- 261
doi: 10.3969/j.issn.1671-7244.2014.03.016
25 常柱刚, 赵翔宇, 黄立浦 考虑拱圈与拱架联合效应的拱架受力性能研究[J]. 中外公路, 2018, 38 (4): 132- 135
CHANG Zhu-gang, ZHAO Xiang-yu, HUANG Li-pu Study on the mechanical behavior of arch frame considering the joint effect of arch ring and arch frame[J]. Chinese and Foreign Highway, 2018, 38 (4): 132- 135
[1] 谢磊,李庆华,徐世烺. 活性粉末混凝土冲击压缩性能及本构关系[J]. 浙江大学学报(工学版), 2021, 55(5): 999-1009.
[2] 王小虎,吉克尼都,陈珊,祁宇轩,彭宇,曾强. X射线透射成像技术原位追踪混凝土吸水过程[J]. 浙江大学学报(工学版), 2021, 55(4): 727-732.
[3] 宋鑫,樊玮洁,毛江鸿,金伟良. 基于多级电迁的混凝土内氯离子动态控制效果[J]. 浙江大学学报(工学版), 2021, 55(3): 511-518.
[4] 李睿鑫,邹贻权,胡大伟,周辉,王冲,周永祥,王祖琦. 高渗透压-硫酸盐侵蚀下混凝土时空劣化[J]. 浙江大学学报(工学版), 2021, 55(3): 539-547.
[5] 白大鹏,张斌,洪昊岑,李洋,季清华,杨华勇. 生物3D打印装置及打印模型形貌检测[J]. 浙江大学学报(工学版), 2021, 55(2): 289-298.
[6] 姚勇,杨贞军,张麒. 硅烷涂层提升钢纤维-砂浆界面性能的试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 1-9.
[7] 葛培,黄炜,李萌. 再生砖骨料混凝土架构模型试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 10-19.
[8] 黄康桥,赵程,周伟,刘杏红,马刚. 基于多场耦合模型的混凝土冻融三维细观研究[J]. 浙江大学学报(工学版), 2021, 55(1): 62-70.
[9] 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟[J]. 浙江大学学报(工学版), 2020, 54(6): 1106-1114.
[10] 张雅婷,JefferyRoesler. 基于大比尺模型试验的连续配筋混凝土路面开裂研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1194-1201.
[11] 范兴朗,谷圣杰,江佳斐,吴熙. FRP筋混凝土板冲切承载力计算方法[J]. 浙江大学学报(工学版), 2020, 54(6): 1058-1067.
[12] 王海龙,吴远建,凌佳燕,孙晓燕. 锈蚀不锈钢筋与混凝土黏结性能退化[J]. 浙江大学学报(工学版), 2020, 54(5): 843-850.
[13] 罗军,邵旭东,曹君辉,樊伟,裴必达. 钢-超高性能混凝土组合板开裂荷载正交试验及计算方法[J]. 浙江大学学报(工学版), 2020, 54(5): 909-920.
[14] 夏晋,甘润立,方言,赵羽习,金伟良. 装配式结构套筒灌浆连接的混凝土结合界面直剪性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 491-498.
[15] 汪劲丰,张爱平,王文浩. 栓钉高度对栓钉连接件抗剪性能的影响[J]. 浙江大学学报(工学版), 2020, 54(11): 2076-2084.