Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (4): 727-732    DOI: 10.3785/j.issn.1008-973X.2021.04.015
土木工程     
X射线透射成像技术原位追踪混凝土吸水过程
王小虎(),吉克尼都,陈珊,祁宇轩,彭宇,曾强*()
浙江大学 建筑工程学院,浙江 杭州 310058
Water imbibition in concrete in-situ traced by transmission X-ray radiography
Xiao-hu WANG(),Ni-du JIKE,Shan CHEN,Yu-xuan QI,Yu PENG,Qiang ZENG*()
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1472 KB)   HTML
摘要:

为了表征二维混凝土的传输过程,制备厚度为1 mm的混凝土薄片. 采用X射线透射成像(TXR)技术,联合扫描电镜、背散射和能谱分析技术(SEM/BSE/EDS)原位追踪水在2维混凝土薄片中的毛细自吸过程. 测试不同质量分数CsCl溶液对X射线透射图像的增强效果. 结果表明,CsCl能够提高吸水过程中混凝土薄片的TXR图像对比度,使得水在混凝土中的渗流路径更清晰、可辨. 水泥浆体在吸收CsCl后,扫描电子背散射图像的对比度显著增强. 不同位置铯原子的EDS能谱结果验证了TXR技术确定吸水前锋位置的准确性.

关键词: X射线透射成像混凝土吸水扫描电镜(SEM)/能谱(EDS)    
Abstract:

Concrete slices with the thickness of 1 mm were fabricated in order to characterize the two-dimensional (2D) water transport process. Transmission X-ray radiography (TXR) was combined with scanning electron microscopy/back-scattered electron/energy-dispersive X-ray spectroscopy (SEM/BSE/EDS) to in-situ trace water imbibitions in the two-dimensional concrete slices. CsCl solutions at different mass fractions were tested to explore the enhancements in contrast of the TXR images. Results show that CsCl can improve the contrast of the TXR images when the concrete slices were partially saturated with the CsCl solutions, which makes the imbibition paths and fronts in the concrete clearly visible. The contrast of the BSE images was enhanced due to the absorption of CsCl in the cement paste. The EDS results of the Cs distributions at different sites of the concrete testified the accuracy of the imbibition fronts detected by TXR.

Key words: transmission X-ray radiography    concrete    water imbibition    scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS)
收稿日期: 2020-04-01 出版日期: 2021-05-07
CLC:  TU 528  
基金资助: 国家自然科学基金资助项目(51878602)
通讯作者: 曾强     E-mail: 21712176@zju.edu.cn;cengq14@zju.edu.cn
作者简介: 王小虎(1994—),男,硕士生,从事损伤混凝土水分动态迁移过程的研究. orcid.org/0000-0003-2832-4536.E-mail: 21712176@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王小虎
吉克尼都
陈珊
祁宇轩
彭宇
曾强

引用本文:

王小虎,吉克尼都,陈珊,祁宇轩,彭宇,曾强. X射线透射成像技术原位追踪混凝土吸水过程[J]. 浙江大学学报(工学版), 2021, 55(4): 727-732.

Xiao-hu WANG,Ni-du JIKE,Shan CHEN,Yu-xuan QI,Yu PENG,Qiang ZENG. Water imbibition in concrete in-situ traced by transmission X-ray radiography. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 727-732.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.04.015        http://www.zjujournals.com/eng/CN/Y2021/V55/I4/727

ww /wc mc /kg mw /kg ms /kg mcoa /kg
0.45 422 190 549 1165
表 1  单位立方米混凝土配比
图 1  混凝土切片吸水试验的现场图片
图 2  混凝土切片未吸水和吸水90 min后的图像
图 3  混凝土切片毛细吸收质量分数为3%、6%、9%、12%、15%和18%的CsCl溶液前、后的TXR图像对比
图 4  混凝土薄片自吸过程的TXR动态图像(每隔30 min取样)和局部区域的对比图像
图 5  混凝土薄片自吸前锋动态侵入过程(CsCl质量分数为15%)
图 6  混凝土切片的SEM/BSE/EDS测试结果(吸收时间为165 min,CsCl质量分数为15%)
图 7  混凝土切片EDS线扫结果:从未吸收区域到吸收区域(吸收时间为165 min,CsCl质量分数为15%)
1 ABYANEH S D, WONG H S, BUENFELD N R Computational investigation of capillary absorption in concrete using a three-dimensional mesoscale approach[J]. Computational Materials Science, 2014, 87: 54- 64
doi: 10.1016/j.commatsci.2014.01.058
2 OESCH T, WEISE F, MEINEL D, et al Quantitative in-situ analysis of water transport in concrete completed using X-ray computed tomography[J]. Transport in Porous Media, 2019, 127 (2): 371- 389
doi: 10.1007/s11242-018-1197-9
3 DESMETTRE C, CHARRON J P Water permeability of reinforced concrete with and without fiber subjected to static and constant tensile loading[J]. Cement and Concrete Research, 2012, 42 (7): 945- 952
doi: 10.1016/j.cemconres.2012.03.014
4 SONG H, KWON S Permeability characteristics of carbonated concrete considering capillary pore structure[J]. Cement and Concrete Research, 2007, 37 (6): 909- 915
doi: 10.1016/j.cemconres.2007.03.011
5 MCCARTER W J, ALASWAD G, SURYANTO B Transient moisture profiles in cover-zone concrete during water absorption[J]. Cement and Concrete Research, 2018, 108: 167- 171
doi: 10.1016/j.cemconres.2018.04.001
6 PLOOY R D, VILLAIN G, LOPES S P, et al Electromagnetic non-destructive evaluation techniques for the monitoring of water and chloride ingress into concrete: a comparative study[J]. Materials and Structures, 2015, 48 (1/2): 369- 386
doi: 10.1617/s11527-013-0189-z
7 NIZOVTSEV M I, STANKUS S V, STERLYAGOV A N, et al Determination of moisture diffusivity in porous materials using gamma-method[J]. International Journal of Heat and Mass Transfer, 2008, 51 (17/18): 4161- 4167
8 ZHANG Peng, WITTMANN F H, LURA P, et al Application of neutron imaging to investigate fundamental aspects of durability of cement-based materials: a review[J]. Cement and Concrete Research, 2018, 108: 152- 166
doi: 10.1016/j.cemconres.2018.03.003
9 张鹏, 赵铁军, WITTMANN F H, 等 开裂混凝土中水分侵入过程的可视化追踪及其特征分析[J]. 硅酸盐学报, 2010, 38 (4): 117- 123
ZHANG Peng, ZHAO Tie-jun, WITTMANN F H, et al Visualization tracing and characteristic analysis of Water invasion into cracked concrete[J]. Journal of the Chinese Ceramic Society, 2010, 38 (4): 117- 123
10 ZHOU Chun-sheng, REN Fan-zhou, ZENG Qiang, et al Pore-size resolved water vapor adsorption kinetics of white cement mortars as viewed from proton NMR relaxation[J]. Cement and Concrete Research, 2018, 105: 31- 43
doi: 10.1016/j.cemconres.2017.12.002
11 YANG Lin, ZHANG Yun-sheng, LIU Zhi-yong, et al In-situ tracking of water transport in cement paste using X-ray computed tomography combined with CsCl enhancing[J]. Materials Letters, 2015, 160: 381- 383
doi: 10.1016/j.matlet.2015.08.011
12 YANG Lin, GAO Dan-yin, ZHANG Yun-sheng, et al Study on water and chloride transport in cracked mortar using X-ray CT, gravimetric method and natural immersion method[J]. Construction and Building Materials, 2018, 176: 652- 664
doi: 10.1016/j.conbuildmat.2018.05.094
13 BEDE A, SCURTU A, ARDELEAN I NMR relaxation of molecules confined inside the cement paste pores under partially saturated conditions[J]. Cement and Concrete Research, 2016, 89: 56- 62
doi: 10.1016/j.cemconres.2016.07.012
14 CHOTARD T J, BONCOEUR-MARTEL M P, SMITH A, et al Application of X-ray computed tomography to characterize the early hydration of calcium aluminate cement[J]. Cement and Concrete Composites, 2003, 25 (1): 145- 152
doi: 10.1016/S0958-9465(01)00063-4
15 FAN Shuai, LI Mo X-ray computed microtomography of three-dimensional microcracks and self-healing in engineered cementitious composites[J]. Smart Materials and Structures, 2015, 24 (1): 015021
doi: 10.1088/0964-1726/24/1/015021
16 BOONE M A, KOCK T D, BULTREYST, et al 3D mapping of water in oolithic limestone at atmospheric and vacuum saturation using X-ray micro-CT differential imaging[J]. Materials Characterization, 2014, 97: 150- 160
doi: 10.1016/j.matchar.2014.09.010
17 ZENG Qiang, LIN Zhen, ZHOU Chun-sheng, et al Capillary imbibition of ethanol in cement paste traced by X-ray computed tomography with CsCl-enhancing technique[J]. Chemical Physics Letters, 2019, 726: 117- 123
doi: 10.1016/j.cplett.2019.04.022
18 董必钦, 郭邦文, 刘昱清, 等 水泥净浆水分传输过程可视化表征与定量分析[J]. 深圳大学学报: 理工版, 2018, 149 (3): 69- 75
DONG Bi-qin, GUO Bang-wen, LIU Yu-qing, et al Visualization and quantitative analysis of water transport evolution in cementitious materials[J]. Journal of Shenzhen University: Science and Engineering, 2018, 149 (3): 69- 75
19 LEITE M B, MONTEIRO P J Microstructural analysis of recycled concrete using X-ray microtomography[J]. Cement and Concrete Research, 2016, 81: 38- 48
doi: 10.1016/j.cemconres.2015.11.010
20 HALL C, HOFF W D. Water transport in brick, stone and concrete [M]. 2nd ed. [S. l.]: CRC press, 2012: 41–46.
[1] 谢磊,李庆华,徐世烺. 活性粉末混凝土冲击压缩性能及本构关系[J]. 浙江大学学报(工学版), 2021, 55(5): 999-1009.
[2] 宋鑫,樊玮洁,毛江鸿,金伟良. 基于多级电迁的混凝土内氯离子动态控制效果[J]. 浙江大学学报(工学版), 2021, 55(3): 511-518.
[3] 李睿鑫,邹贻权,胡大伟,周辉,王冲,周永祥,王祖琦. 高渗透压-硫酸盐侵蚀下混凝土时空劣化[J]. 浙江大学学报(工学版), 2021, 55(3): 539-547.
[4] 姚勇,杨贞军,张麒. 硅烷涂层提升钢纤维-砂浆界面性能的试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 1-9.
[5] 葛培,黄炜,李萌. 再生砖骨料混凝土架构模型试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 10-19.
[6] 黄康桥,赵程,周伟,刘杏红,马刚. 基于多场耦合模型的混凝土冻融三维细观研究[J]. 浙江大学学报(工学版), 2021, 55(1): 62-70.
[7] 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟[J]. 浙江大学学报(工学版), 2020, 54(6): 1106-1114.
[8] 张雅婷,JefferyRoesler. 基于大比尺模型试验的连续配筋混凝土路面开裂研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1194-1201.
[9] 范兴朗,谷圣杰,江佳斐,吴熙. FRP筋混凝土板冲切承载力计算方法[J]. 浙江大学学报(工学版), 2020, 54(6): 1058-1067.
[10] 罗军,邵旭东,曹君辉,樊伟,裴必达. 钢-超高性能混凝土组合板开裂荷载正交试验及计算方法[J]. 浙江大学学报(工学版), 2020, 54(5): 909-920.
[11] 王海龙,吴远建,凌佳燕,孙晓燕. 锈蚀不锈钢筋与混凝土黏结性能退化[J]. 浙江大学学报(工学版), 2020, 54(5): 843-850.
[12] 夏晋,甘润立,方言,赵羽习,金伟良. 装配式结构套筒灌浆连接的混凝土结合界面直剪性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 491-498.
[13] 孙晓燕,唐归,王海龙,汪群,张治成. 3D打印路径对混凝土拱桥结构力学性能的影响[J]. 浙江大学学报(工学版), 2020, 54(11): 2085-2091.
[14] 汪劲丰,张爱平,王文浩. 栓钉高度对栓钉连接件抗剪性能的影响[J]. 浙江大学学报(工学版), 2020, 54(11): 2076-2084.
[15] 王永贵,李帅鹏,HUGHESPeter,范玉辉,高向宇. 改性再生混凝土高温性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2047-2057.