Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (5): 843-850    DOI: 10.3785/j.issn.1008-973X.2020.05.001
土木工程、交通工程     
锈蚀不锈钢筋与混凝土黏结性能退化
王海龙1(),吴远建1,凌佳燕2,孙晓燕1,*()
1. 浙江大学建筑工程学院,浙江 杭州 310058
2. 浙江大学建筑设计研究院,浙江 杭州 310028
Bond degradation between corroded stainless steel bar and concrete
Hai-long WANG1(),Yuan-jian WU1,Jia-yan LING2,Xiao-yan SUN1,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. The Architectural Design and Research Institute of Zhejiang University, Hangzhou 310028, China
 全文: PDF(1618 KB)   HTML
摘要:

通过不同锈蚀率下不锈钢筋混凝土试件的中心拉拔试验,分析锈蚀率、锈胀裂缝宽度对不锈钢筋/混凝土黏结性能退化的影响规律,分别基于质量锈蚀率和表面裂缝宽度建立不锈钢筋与混凝土黏结强度的预测公式,并与普通钢筋混凝土黏结性能进行对比分析. 研究结果表明:类似普通钢筋混凝土黏结退化规律,锈蚀不锈钢筋黏结强度随锈蚀率增大呈先增后减趋势,但拐点锈蚀率较普通钢筋更大;不锈钢局部坑蚀具有较强的随机性,使得锈胀裂缝宽度与锈蚀率的关系较为离散,与基于锈蚀率的黏结退化模型相比,基于表面锈胀裂缝宽度的模型可以更好地预测不锈钢筋与混凝土黏结强度的退化规律,工程实用性更强;在相同锈蚀程度下,不锈钢筋黏结强度退化程度较普通钢筋小,现有的普通钢筋黏结退化模型可以用于不锈钢黏结强度的预测,具有一定的安全保证.

关键词: 不锈钢筋混凝土黏结强度退化锈蚀率裂缝宽度    
Abstract:

The direct pullout tests under different corrosion rates were conducted to evaluate the bond performance between the corroded stainless steel bar and the concrete. The influences of corrosion rate and surface crack width on the bond degradation were analyzed, and then predictive formulas of bond strength between the stainless steel bar and the concrete were given respectively based on the corrosion rate and the surface crack width. The differences of bond properties between ordinary and stainless steel reinforced concretes were compared. Test results show that the bond strength between corroded stainless steel bar and concrete increases firstly and then decreases as the increase of corrosion rate, which is similar to that of the ordinary reinforced concrete, however the critical corrosion rate of stainless steel affecting the bond strength is higher than that of ordinary reinforcement. Pitting corrosion has strong randomness, which leads to the discrete relationship between the corrosion crack width and corrosion rate. Compared with the model based on the corrosion rate, the predictive model based on the surface crack width has a better agreement with the test results, and is of better practicability. The degradation amount of bond strength of stainless steel reinforced concrete is smaller than that of ordinary reinforced concrete at a same corrosion degree. The existing bond degradation model of ordinary reinforced concrete can be used to descript the stainless steel reinforced concrete directly and has a certain safety stock.

Key words: stainless steel reinforced concrete    bond strength    degradation    corrosion rate    crack width
收稿日期: 2019-04-25 出版日期: 2020-05-05
CLC:  TU 375  
基金资助: 国家自然科学基金资助项目(51579220);国家“863”高技术研究发展计划资助项目(2015AA03A502)
通讯作者: 孙晓燕     E-mail: hlwang@zju.edu.cn;selina@zju.edu.cn
作者简介: 王海龙(1974—),男,教授,从事混凝土材料与结构研究. orcid.org/0000-0003-0805-7151. E-mail: hlwang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王海龙
吴远建
凌佳燕
孙晓燕

引用本文:

王海龙,吴远建,凌佳燕,孙晓燕. 锈蚀不锈钢筋与混凝土黏结性能退化[J]. 浙江大学学报(工学版), 2020, 54(5): 843-850.

Hai-long WANG,Yuan-jian WU,Jia-yan LING,Xiao-yan SUN. Bond degradation between corroded stainless steel bar and concrete. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 843-850.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.05.001        http://www.zjujournals.com/eng/CN/Y2020/V54/I5/843

图 1  中心拔出试件尺寸
材料 ρB/(kg?m?3 材料 ρB/(kg?m?3
220.0 1 033.5
水泥 611.6 7.7
486.4 减水剂 2.2
表 1  混凝土配合比
元素 wB/% 元素 wB/%
C 0.02 Cr 22.83
Mn 1.36 Ni 6.15
S ? Mo 3.21
Si 0.14 ? ?
表 2  新型2205不锈钢元素化学组分
图 2  拔出试验加载装置
图 3  拔出试件典型破坏模式
图 4  拔出试件劈裂破坏面细节
试件编号 ηt/% ηa/% ω/mm Sm/mm τ/MPa κp1 κp2
自由端 加载端
0-1 0 0 0 0.284 0.953 10.868 1.054 0.996
1-1 1 1.73 0.17 0.421 1.115 12.066 1.170 1.105
3-1 3 3.04 0.05 0.278 1.139 11.460 1.111 1.221
4-1 4 3.98 0.28 0.315 1.446 14.634 1.419 1.169
5-1 5 4.95 0.33 0.342 1.696 8.555 0.829 0.940
7-1 7 5.82 0.19 0.392 1.003 9.219 0.894 0.866
9-1 9 7.47 0.21 0.259 0.813 8.902 0.863 0.731
12-1 12 11.33 0.07 0.454 2.331 13.289 1.288 0.473
表 3  锈蚀不锈钢筋拉拔试验部分结果
图 5  不同锈蚀率试件黏结滑移曲线
图 6  黏结强度衰减系数与质量锈蚀率关系
图 7  基于锈蚀率的黏结退化模型对比
图 8  不同锈蚀率的不锈钢筋表面形态
图 9  黏结强度衰减系数与裂缝宽度关系
图 10  锈胀裂缝宽度与质量锈蚀率关系
图 11  不同锈蚀形态的裂缝对比
图 12  基于表面裂缝宽度的黏结退化模型对比
1 ALSULAIMANI G J, KALEEMULLAH M, BASUNBUL I A, et al Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members[J]. ACI Structural Journal, 1990, 87 (2): 220- 231
2 张国学, 吴苗苗 不锈钢钢筋混凝土的应用及发展[J]. 佛山科学技术学院学报: 自然科学版, 2006, 24 (2): 10- 13
ZHANG Guo-xue, WU Miao-miao Application and development of stainless steel rebars for reinforced concrete structures[J]. Journal of Foshan University: Natural Science Edition, 2006, 24 (2): 10- 13
3 赵峰. 不锈钢钢筋混凝土梁抗震性能试验研究[D]. 广州: 广东工业大学, 2009.
ZHAO Feng. Experimental research on seismic behavior of stainless steel reinforced concrete beams [D]. Guangzhou: Guangdong University of Technology, 2009.
4 张劲全. 不锈钢筋混凝土结构研究[M]. 北京: 人民交通出版社, 2015: 65-73.
5 凌佳燕. 新型不锈钢筋耐蚀性及不锈钢筋混凝土构件力学性能研究[D]. 杭州: 浙江大学, 2018.
LING Jia-yan. Study on corrosion resistance of new stainless steel bars and mechanical properties of stainless steel reinforced concrete members [D]. Hangzhou: Zhejiang University, 2018.
6 于凤荣. 锈蚀损伤后不锈钢钢筋混凝土构件力学性能研究[D]. 杭州: 浙江大学, 2017.
YU Feng-rong. Study on mechanical properties of stainless steel reinforced concrete members after corrosion damage [D]. Hangzhou: Zhejiang University, 2017.
7 KEARSLEY E P, JOYCE A Effect of corrosion products on bond strength and flexural behaviour of reinforced concrete slabs[J]. Journal of the South African Institution of Civil Engineers, 2014, 56 (2): 21- 29
8 LAN C, KIM J H J, YI S T Bond strength prediction for reinforced concrete members with highly corroded reinforcing bars[J]. Cement and Concrete Composites, 2008, 30 (7): 603- 611
doi: 10.1016/j.cemconcomp.2008.03.006
9 张伟平, 张誉 锈胀开裂后钢筋混凝土黏结滑移本构关系研究[J]. 土木工程学报, 2001, 34 (5): 40- 44
ZHANG Wei-ping, ZHANG Yu Study on bond-slip constitutive relation of reinforced concrete after rust expansion cracking[J]. China Civil Engineering Journal, 2001, 34 (5): 40- 44
doi: 10.3321/j.issn:1000-131X.2001.05.008
10 林红威, 赵羽习 变形钢筋与混凝土黏结性能研究综述[J]. 建筑结构学报, 2019, 40 (1): 11- 27
LIN Hong-wei, ZHAO Yu-xi A review of bond behavior between deformed reinforcement bar and concrete[J]. Journal of Architectural Structure, 2019, 40 (1): 11- 27
11 GB/T50082-2009. 普通混凝土长期性能和耐久性能试验方法标准[S]. 北京: 中华人民共和国住房和城乡建设部, 2009.
12 袁迎曙, 余索, 贾福萍 锈蚀钢筋混凝土的黏结性能退化的试验研究[J]. 工业建筑, 1999, 29 (11): 47- 50
YUAN Ying-shu, YU Suo, JIA Fu-ping Experimental study on degradation of bond property of corroded reinforced concrete[J]. Industrial Construction, 1999, 29 (11): 47- 50
doi: 10.3321/j.issn:1000-8993.1999.11.011
13 ALMUSALLAM A A, ALGAHTANI A S, AZIZ A R, et al Effect of reinforcement corrosion on bond strength[J]. Construction and Building Materials, 1996, 10 (2): 123- 129
doi: 10.1016/0950-0618(95)00077-1
14 CABRERA J G Deterioration of concrete due to reinforcement steel corrosion[J]. Cement and Concrete Composites, 1996, 18 (1): 47- 59
doi: 10.1016/0958-9465(95)00043-7
15 AMLEH L. Bond deterioration of reinforcing steel in concrete due to corrosion [D]. Montreal: McGill University, 2000.
16 CHUNG L, CHO S H, KIM J, et al Correction factor suggestion for ACI development length provisions based on flexural testing of RC slabs with various levels of corroded reinforcing bars[J]. Engineering Structures, 2004, 26 (8): 1013- 1026
doi: 10.1016/j.engstruct.2004.01.008
17 夏晋. 锈蚀钢筋混凝土构件力学性能研究[D]. 杭州: 浙江大学, 2010.
XIA Jin. Study on mechanical properties of corroded reinforced concrete members [D]. Hangzhou: Zhejiang University, 2010.
18 赵羽习, 金伟良 锈蚀钢筋与混凝土黏结性能的试验研究[J]. 浙江大学学报: 工学版, 2002, 36 (4): 8- 12
ZHAO Yu-xi, JIN Wei-liang Experimental study on bonding properties of corroded steel bar and concrete[J]. Journal of Zhejiang University: Engineering Science, 2002, 36 (4): 8- 12
19 徐育才. 钢筋锈蚀拉拔试验及其黏结性能研究[D]. 武汉: 华中科技大学, 2006.
XU Yu-cai. Corrosion drawing test of reinforcement bar and its bonding property [D]. Wuhan: Huazhong University of Science and Technology, 2006.
20 梁岩, 罗小勇, 肖小琼, 等 锈蚀钢筋混凝土黏结滑移性能试验研究[J]. 工业建筑, 2012, 42 (10): 95- 100
LIANG Yan, LUO Xiao-yong, XIAO Xiao-qiong, et al Experimental study on bond-slip behavior of corroded reinforced concrete[J]. Industrial Construction, 2012, 42 (10): 95- 100
21 BHARGAVA K, GHOSH A K, MORI Y, et al Suggested empirical models for corrosion-Induced bond degradation in reinforced concrete[J]. Journal of Structural Engineering, 2008, 134 (2): 221- 230
doi: 10.1061/(ASCE)0733-9445(2008)134:2(221)
22 LEE H S, NOGUCHI T, TOMOSAWA F Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcement corrosion[J]. Cement and Concrete Research, 2002, 32 (8): 1313- 1318
23 KIVELL A R L. Effects of bond deterioration due to corrosion on seismic performance of reinforced concrete structures [D]. Christchurch: University of Canterbury, 2012.
24 林红威. 单调及重复荷载作用下锈蚀钢筋混凝土黏结性能试验研究[D]. 杭州: 浙江大学, 2017.
LIN Hong-wei. Experimental study on bond behavior of corroded reinforced concrete under monotonic and repeated loads [D]. Hangzhou: Zhejiang University, 2017.
25 曲福来, 闫磊源, 刘桂荣, 等 往复荷载下不均匀锈蚀钢筋与混凝土黏结性能试验研究[J]. 工业建筑, 2016, 46 (4): 110- 113
QU Fu-lai, YAN Lei-yuan, LIU Gui-rong, et al Experimental study on bond behavior of uneven corroded reinforcement bar and concrete under reciprocating load[J]. Industrial Construction, 2016, 46 (4): 110- 113
26 吴锋, 张章, 龚景海 基于锈胀裂缝的锈蚀梁钢筋锈蚀率计算[J]. 建筑结构学报, 2013, 34 (10): 144- 150
WU Feng, ZHANG Zhang, GONG Jing-hai Corrosion rate calculation of corroded beams based on corrosion expansion cracks[J]. Journal of Architectural Structure, 2013, 34 (10): 144- 150
27 徐港, 卫军, 刘德富 非均匀锈蚀变形钢筋黏结性能试验研究[J]. 工业建筑, 2009, 39 (1): 101- 104
XU Gang, WEI Jun, LIU De-fu Experimental study on bonding behavior of non-uniform corroded deformed reinforcement bars[J]. Industrial Construction, 2009, 39 (1): 101- 104
28 莫青城. 锈蚀钢筋混凝土黏结滑移性能研究及其超声检测[D]. 哈尔滨: 哈尔滨工业大学, 2016.
MO Qing-cheng. Study on bond-slip behavior of corroded reinforced concrete and its ultrasound detection [D]. Harbin: Harbin Institute of Technology, 2016.
29 LAW D W, TANG D, MOLYNEAUX T K C, et al Impact of crack width on bond: confined and unconfined rebar[J]. Materials and Structures, 2011, 44 (7): 1287- 1296
doi: 10.1617/s11527-010-9700-y
30 FISCHER C. Experimental investigations on the effect of corrosion on bond of deformed bars [C]// 8th fibs PhD Symposium in Civil Engineering. Lyngby: Technical University of Denmark, 2010: 1-6.
31 何世钦. 氯离子环境下钢筋混凝土构件耐久性能试验研究[D]. 大连: 大连理工大学, 2004.
HE Shi-qin. Experimental study on durability of reinforced concrete members under chloride ion environment [D]. Dalian: Dalian University of Technology, 2004.
32 张伟平, 张誉. 锈后钢筋混凝土黏结构滑移性能的试验研究[C]//中国土木工程学会第九届年会. 杭州: 中国土木工程学会, 2000: 361-366.
ZHANG Wei-ping, ZHANG Yu. Experimental study on the slippage behavior of reinforced concrete cohesive structure after rust [C]// The 9th Annual Meeting of the Chinese Society of Civil Engineering. Hangzhou: China Civil Engineering Society, 2000: 361-366.
[1] 张雅婷,JefferyRoesler. 基于大比尺模型试验的连续配筋混凝土路面开裂研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1194-1201.
[2] 卫军,杜永潇,梁曼舒. 梁结构疲劳刚度退化对模态频率的影响[J]. 浙江大学学报(工学版), 2019, 53(5): 899-909.
[3] 王鹏辉,乔宏霞,冯琼,曹辉. 考虑个体差异的氯氧镁水泥混凝土涂层钢筋寿命预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2309-2316.
[4] 元斐斌,金伟良,毛江鸿,王金权,樊玮洁,夏晋. 基于双向电迁移的开裂混凝土除氯阻锈效果[J]. 浙江大学学报(工学版), 2019, 53(12): 2317-2324.
[5] 徐强, 郑山锁, 李晓昇. 考虑近海环境劣化作用的钢框架节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2018, 52(12): 2314-2321.
[6] 戴理朝, 王磊, 张建仁, 羊日华. 钢绞线锈蚀产物填充及裂缝宽度预测[J]. 浙江大学学报(工学版), 2018, 52(1): 97-105.
[7] 周炳海, 刘子龙. 考虑质量损失的退化系统维护建模[J]. 浙江大学学报(工学版), 2016, 50(12): 2270-2276.
[8] 崔光茫, 赵巨峰, 冯华君, 徐之海, 李奇, 陈跃庭. 非均匀介质退化图像快速仿真模型的建立[J]. J4, 2014, 48(2): 303-311.
[9] 牛辉,汪劲丰,张仪萍,张治成,俞亚南. 空间曲线蝶形拱桥顶推施工的多尺度模拟分析[J]. J4, 2013, 47(7): 1205-1212.
[10] 王雪松, 金贤玉, 田野, 金南国. 基于非均匀锈蚀的带肋钢筋黏结性能[J]. J4, 2013, 47(1): 154-161.
[11] 王海龙,董宜森,孙晓燕, 金伟良. 干湿交替环境下混凝土受硫酸盐侵蚀劣化机理[J]. J4, 2012, 46(7): 1255-1261.
[12] 牛辉, 汪劲丰, 张巍, 俞亚南, 吴光宇. 基于实体退化单元的高墩非线性稳定仿真分析[J]. J4, 2012, 46(6): 1082-1089.
[13] 田浩, 金小平, 陈艾荣. 基于概率的钢筋混凝土桥梁加固措施影响分析[J]. J4, 2012, 46(6): 1097-1106.
[14] 郭维, 丁扣宝, 韩成功, 朱大中, 韩雁. N型LDMOS器件在关态雪崩击穿条件下的退化[J]. J4, 2011, 45(6): 1038-1042.
[15] 陈锦伟,冯华君,徐之海. CCD彩色插值的MTF退化研究[J]. J4, 2011, 45(11): 2063-2067.