Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (12): 2309-2316    DOI: 10.3785/j.issn.1008-973X.2019.12.007
土木工程、水利工程     
考虑个体差异的氯氧镁水泥混凝土涂层钢筋寿命预测
王鹏辉1(),乔宏霞1,2,*(),冯琼1,曹辉1
1. 兰州理工大学 甘肃省土木工程防灾减灾重点实验室,甘肃 兰州 730050
2. 中国科学院 青海盐湖研究所,青海 西宁 810083
Life prediction of coated steel with individual difference in magnesium oxychloride cement concrete
Peng-hui WANG1(),Hong-xia QIAO1,2,*(),Qiong FENG1,Hui CAO1
1. Key laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
2. Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810083, China
 全文: PDF(2088 KB)   HTML
摘要:

氯氧镁涂层钢筋混凝土(MOCRC)中涂层钢筋的制作误差导致不同MOCRC中涂层钢筋的寿命预测存在一定的差异,提出充分考虑个体差异性的溶液浸泡加速腐蚀试验,基于Wiener退化过程对涂层钢筋进行寿命预测. 判断涂层钢筋腐蚀电流密度是否符合Wiener退化过程;在考虑涂层钢筋个体差异性的前提下引入漂移系数进行建模;将考虑个体差异与未考虑个体差异的涂层钢筋寿命预测对比分析. 结果表明:溶液浸泡加速腐蚀试验下涂层钢筋的退化模型服从一个项数的指数函数. 基于Wiener退化过程,考虑个体差异性的涂层钢筋在25 000 d左右发生严重锈蚀,未考虑个体差异性的涂层钢筋在30 000 d左右发生严重锈蚀.

关键词: 涂层钢筋个体差异耐久性退化加速腐蚀试验Wiener函数    
Abstract:

The manufacturing error of coated steel bars in magnesium oxychloride coated reinforced concrete (MOCRC) leads to some differences in the life prediction of coated steel bars in different MOCRCs. The solution immersion accelerated corrosion test with full consideration of individual differences was proposed, and the life prediction of coated steel bars was based on Wiener degeneration process. Judge whether the corrosion current density of the coated steel bar complied with the Wiener degradation process. The drift coefficient was introduced for modeling under the individual differences of the coated steel bars. Coated steel bars' life predictions between considering individual differences and no individual differences were compared. Results show that the degradation model of coated steel bar under accelerated corrosion test in fixed concentration solution obeys one number term of exponential function. Under the Wiener degradation process, the coated steel bars with individual differences are severely corroded around 25 000 d, while the coated steel bars without individual differences are severely corroded around 30 000 d.

Key words: coated steel bar    individual differences    durability degradation    acceleration corrosion test    Wiener function
收稿日期: 2018-11-16 出版日期: 2019-12-17
CLC:  TU 528  
基金资助: 国家自然科学基金资助项目(51468039,51868044);甘肃省自然科学基金资助项目(2017GS10844,2018GS10844);兰州理工大学红柳一流学科建设计划资助项目
通讯作者: 乔宏霞     E-mail: 356984639@qq.com;qiaohongxia@lut.edu.cn
作者简介: 王鹏辉(1991—),男,博士生,从事混凝土耐久性研究. orcid.org/0000-0001-8704-5786. E-mail: 356984639@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王鹏辉
乔宏霞
冯琼
曹辉

引用本文:

王鹏辉,乔宏霞,冯琼,曹辉. 考虑个体差异的氯氧镁水泥混凝土涂层钢筋寿命预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2309-2316.

Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO. Life prediction of coated steel with individual difference in magnesium oxychloride cement concrete. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2309-2316.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.12.007        http://www.zjujournals.com/eng/CN/Y2019/V53/I12/2309

种类 ρ/
(g·mL?1
pH wa/
%
Rw-r/
%
Rb/
%
${f_{{\rm{cu}},{\rm{k}}}}/{\rm{MPa}}$ d
3 d 7 d 28 d
PCA(I) 0.000 3 8.08 ≤3.88 34 0 168 149 139 0.02
表 1  减水剂各项物理指标
kg/m3
材料 密度 材料 密度
轻烧氧化镁 388.96 砂子 625.00
减水剂 16.02 石子 1 162.00
I级粉煤灰 68.64 工业氯化镁 147.81
耐水剂 4.58 135.59
表 2  氯氧镁水泥混凝土(MOCC)配合比
J / (μA·cm?2 锈蚀情况 J / (μA·cm?2 锈蚀情况
[0, 1) 无锈蚀 [0.5, 1) 中等腐蚀
[0.1, 0.5) 低腐蚀 [1, +∞) 严重腐蚀
表 3  钢筋腐蚀电流密度与锈蚀情况之间的对应关系
图 1  涂层钢筋在0~990 d的极化曲线图
x/d J /(10?3 μA·cm?2
A组 B组 C组
0 0.045 0.039 0.047
90 0.260 0.482 0.385
180 0.685 0.856 0.754
270 1.130 1.060 1.120
360 1.280 1.160 1.260
450 1.460 1.270 1.180
540 1.580 1.330 1.460
630 1.710 1.650 1.850
720 1.940 2.150 2.240
810 2.380 2.470 2.780
900 3.590 3.270 2.690
990 3.280 3.470 3.030
表 4  涂层钢筋腐蚀电流密度
图 2  一元Wiener退化过程的自相关函数曲线
μA /cm2
${\varDelta _{ {t_i} - {t_{i - 1} } } }$ ΔJ /10?3
A组 B组 C组
${\varDelta _{{t_1} - {t_0}}}$ 0.215 0.443 0.338
${\varDelta _{{t_2} - {t_1}}}$ 0.425 0.374 0.369
${\varDelta _{{t_3} - {t_2}}}$ 0.445 0.204 0.366
${\varDelta _{{t_4} - {t_3}}}$ 0.150 0.100 0.140
${\varDelta _{{t_5} - {t_4}}}$ 0.180 0.110 ?0.080
${\varDelta _{{t_6} - {t_5}}}$ 0.120 0.060 0.280
${\varDelta _{{t_7} - {t_6}}}$ 0.130 0.320 0.390
${\varDelta _{{t_8} - {t_7}}}$ 0.230 0.500 0.390
${\varDelta _{{t_9} - {t_8}}}$ 0.440 0.320 0.540
${\varDelta _{{t_{10}} - {t_9}}}$ 1.210 0.800 ?0.090
${\varDelta _{{t_{11}} - {t_{10}}}}$ ?0.310 0.300 0.340
表 5  涂层钢筋腐蚀电流密度增量
图 3  腐蚀电流密度增量概率图
图 4  3组涂层钢筋腐蚀电流密度拟合图
估计方法 ${\mu _a}$/10?5 $\hat \sigma _a^{\rm{2}}$ b c ${\rm{ln } }\,L\left( \theta \right)$ AIC
M-1 0.690 9.660×10?14 0.002 1 73.84 ?139.6
M-2-A 4.500 3.400×10?6 ? ? ?473.8 946.3
M-2-B 4.432 3.398×10?6 ? ? ?442.6 881.2
M-2-C 4.714 3.523×10?6 ? ? ?432.5 861.0
表 6  考虑和不考虑个体差异的参数估计结果
图 5  不同方法的可靠度函数曲线
1 文静, 余红发, 吴成友, 等 氯氧镁水泥水化历程的影响因素及水化动力学[J]. 硅酸盐学报, 2013, 41 (5): 588- 596
WEN Jing, YU Hong-fa, WU Cheng-you, et al Hydration kinetic and influencing parameters in hydration process of magnesium oxychloride cement[J]. Journal of The Chinese Ceramic Society, 2013, 41 (5): 588- 596
doi: 10.7521/j.issn.0454-5648.2013.05.03
2 MA?URANIC C, BILINSKI H, MATKOVIC B Reaction products in the system MgCl2-NaOH-H2O[J]. Journal of the American Ceramic Society, 1982, 65 (10): 523- 526
doi: 10.1111/j.1151-2916.1982.tb10346.x
3 乔宏霞, 巩位, 王鹏辉, 等 硫酸盐环境氯氧镁水泥混凝土中钢筋防护试验[J]. 西南交通大学学报, 2017, 52 (2): 247- 253
QIAO Hong-xia, GONG Wei, WANG Peng-hui, et al Experimental study on steel reinforcement protection in magnesium oxychloride cement concrete under sulfate environment[J]. Journal of Southwest Jiaotong University, 2017, 52 (2): 247- 253
doi: 10.3969/j.issn.0258-2724.2017.02.006
4 乔宏霞, 巩位, 陈广峰, 等 基于极化曲线的镁水泥混凝土中钢筋腐蚀试验[J]. 华中科技大学学报: 自然科学版, 2016, 44 (1): 6- 10
QIAO Hong-xia, GONG Wei, CHEN Guang-feng, et al Experimental study on corrosion of steel bar in magnesium cement concrete based on polarization curves[J]. Journal of Huazhong University of Science and Technology: Nature Science, 2016, 44 (1): 6- 10
5 乔宏霞, 巩位, 高升, 等 镁水泥混凝土中钢筋的电化学腐蚀研究[J]. 材料科学与工艺, 2016, 24 (1): 63- 69
QIAO Hong-xia, GONG Wei, GAO Sheng, et al Electrochemical corrosion of steel bar in the magnesium cement concrete[J]. Materials Science and Technology, 2016, 24 (1): 63- 69
doi: 10.11951/j.issn.1005-0299.20160110
6 FAN J, YUNG K C, PECHT M Lifetime estimation of high-power white led using degradation-data-driven method[J]. IEEE Transactions on Device and Materials Reliability, 2012, 12 (2): 470- 477
doi: 10.1109/TDMR.2012.2190415
7 SUN Q, KVAM P H Multi-cause degradation path model: a case study on rubidium lamp degradation[J]. Quality and Reliability Engineering International, 2011, 27 (6): 781- 793
doi: 10.1002/qre.1159
8 SI X S, WANG W B, CHEN M Y, et al A Degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution[J]. European Journal of Operational Research, 2012, 226 (1): 53- 66
9 邓爱民, 陈循, 张春华, 等 基于性能退化数据的可靠性评估[J]. 宇航学报, 2006, 27 (3): 546- 552
DENG Ai-min, CHEN Xun, ZHANG Chun-hua, et al Reliability assessment based on performance degradation data[J]. Journal of Astronautics, 2006, 27 (3): 546- 552
doi: 10.3321/j.issn:1000-1328.2006.03.044
10 赵建印, 刘芳 加速退化失效产品可靠性评估方法[J]. 哈尔滨工业大学学报, 2009, 40 (10): 1669- 1671
ZHAO Jian-yin, LIU Fang Reliability assessment from accelerated performance degradation tests[J]. Journal of Harbin Institute of Technology, 2009, 40 (10): 1669- 1671
11 JIANG R, JARDINE A Health state evaluation of an item: a general framework and graphical representation[J]. Reliability Engineering and System Safety, 2008, 93 (1): 89- 99
doi: 10.1016/j.ress.2006.10.018
12 张永强, 刘琦, 周经伦 小子样条件下基于Normal-Poisson过程的性能可靠性评定[J]. 国防科技大学学报, 2006, 28 (3): 128- 132
ZHANG Yong-qiang, LIU Qi, ZHOU Jing-lun Reliability evaluation based on normal-poisson process on condition of small sampling test[J]. Journal of National University of Defense Technology, 2006, 28 (3): 128- 132
doi: 10.3969/j.issn.1001-2486.2006.03.027
13 KLUTKE G A, YANG Y The availability of inspected systems subject to shocks and graceful degradation[J]. IEEE Transactions on Reliability, 2002, 51 (3): 371- 374
doi: 10.1109/TR.2002.802891
14 HSIEH M H, JENG S L, SHEN P S Assessing device reliability based on scheduled discrete degradation measurements[J]. Probabilistic Engineering Mechanics, 2009, 24 (2): 151- 158
doi: 10.1016/j.probengmech.2008.04.003
15 王小林, 程志君, 郭波 基于维纳过程金属化膜电容器的剩余寿命预测[J]. 国防科技大学学报, 2011, 33 (4): 146- 151
WANG Xiao-lin, CHENG Zhi-jun, GUO Bo Residual life forecasting of metallized film capacitor based on wiener process[J]. Journal of National University of Defense Technology, 2011, 33 (4): 146- 151
doi: 10.3969/j.issn.1001-2486.2011.04.028
16 TANG J, SU T S Estimating failure time distribution and its parameters based on intermediate data from a Wiener degradation model[J]. Naval Research Logistics, 2008, 55 (3): 265- 276
doi: 10.1002/nav.20280
17 乔宏霞, 王鹏辉, 巩位, 王旭峰, 张建平 久美特涂层对镁水泥混凝土中钢筋保护试验研究[J]. 硅酸盐通报, 2016, 35 (12): 4166- 4172
QIAO Hong-xia X, WANG Peng-hui, GONG Wei, et al Geomet coating protection test to steel bars of magnesium oxychloride cement concrete[J]. Bulletin of the Chinese Ceramic Society, 2016, 35 (12): 4166- 4172
18 罗刚, 施养抗 钢筋混凝土构件中钢筋锈蚀量的无损检测方法[J]. 福建建筑, 2002, 9 (4): 55- 57
LUO Gang, SHI Yang-kang Review of non-destructive methods in assessment corrosion in reinforced concrete member[J]. Fujian Architecture and Construction, 2002, 9 (4): 55- 57
19 ISGOR, O B, A durability model for chloride and carbonation induced steel corrosion in reinforced concrete members [D]. Canada: Carleton University, 2002: 27.
20 COX D R, MILLER H D. The theory of stochastic processes [M]. London: Chapman and Hall, 1965: 4.
21 唐圣金, 郭晓松, 周召发, 等 步进应力加速退化试验的建模与剩余寿命估计[J]. 机械工程学报, 2014, 50 (16): 33- 40
TANG Sheng-jin, GUO Xiao-song, ZHOU Zhao-fa, et al Step stress accelerated degradation process modeling and remaining useful life estimation[J]. Journal of Mechanical Engineering, 2014, 50 (16): 33- 40
22 蔡忠义, 陈云翔, 张诤敏, 等 非线性步进加速退化数据的可靠性评估方法[J]. 北京航空航天大学学报, 2016, 42 (3): 576- 582
CAI Zhong-yi, CHEN Yun-xiang, ZHANG Zheng-min, et al Reliability assessment method of nonlinear step-stress accelerated degradation data[J]. Journal of Beijing University of Aeronautics and Astr, 2016, 42 (3): 576- 582
23 WHITMORE G A, SCHENKELBERG F Modeling accelerated degradation data using Wiener diffusion with a time scale transformation[J]. Lifetime Data Analysis, 1997, 3 (1): 27- 54
doi: 10.1023/A:1009664101413
24 PENG C Y, TSENG S T Mis-specification analysis of linear degradation models[J]. IEEE Transactions on Reliability, 2009, 58 (3): 444- 455
doi: 10.1109/TR.2009.2026784
25 乔宏霞, 朱彬荣, 路承功, 等 基于Wiener随机过程的混凝土加速寿命试验[J]. 建筑材料学报, 2016, 19 (6): 1023- 1027
QIAO Hong-xia, ZHU Bin-rong, LU Cheng-gong, et al Accelerated life test of concrete based on Wiener stochastic process[J]. Journal of Building Materials, 2016, 19 (6): 1023- 1027
doi: 10.3969/j.issn.1007-9629.2016.06.012
[1] 谢磊,李庆华,徐世烺. 活性粉末混凝土冲击压缩性能及本构关系[J]. 浙江大学学报(工学版), 2021, 55(5): 999-1009.
[2] 王小虎,吉克尼都,陈珊,祁宇轩,彭宇,曾强. X射线透射成像技术原位追踪混凝土吸水过程[J]. 浙江大学学报(工学版), 2021, 55(4): 727-732.
[3] 姚勇,杨贞军,张麒. 硅烷涂层提升钢纤维-砂浆界面性能的试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 1-9.
[4] 葛培,黄炜,李萌. 再生砖骨料混凝土架构模型试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 10-19.
[5] 王永贵,李帅鹏,HUGHESPeter,范玉辉,高向宇. 改性再生混凝土高温性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2047-2057.
[6] 李庆华,舒程岚青. 超高韧性水泥基复合材料的波传播试验研究[J]. 浙江大学学报(工学版), 2020, 54(5): 851-857.
[7] 李晓田,王楚昕,于永强. 基于颗粒流交互理论的水泥净浆流变分布算法[J]. 浙江大学学报(工学版), 2019, 53(12): 2264-2270.
[8] 夏晋,金世杰,何晓宇,徐小梅,金伟良. 电势条件对混凝土结构电化学修复数值模拟的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2298-2308.
[9] 欧祖敏, 孙璐. 冻融损伤混凝土的弯曲疲劳寿命可靠性分析[J]. 浙江大学学报(工学版), 2017, 51(6): 1074-1081.
[10] 李静, 王哲. 似平面应力条件下混凝土的变形特性[J]. 浙江大学学报(工学版), 2017, 51(4): 745-751.
[11] 温小栋, 蔡煜梁, 赵莉, 冯蕾. 凝灰岩机制砂混凝土抗低温硫酸盐侵蚀性[J]. 浙江大学学报(工学版), 2017, 51(3): 532-537.
[12] 熊海贝,曹纪兴,张凤亮. 含加强层框筒结构位移监测方法[J]. 浙江大学学报(工学版), 2016, 50(9): 1752-1760.
[13] 吴萌, 姬永生, 陈晓峰, 张领雷, 陈向东. 超细粉煤灰对碳硫硅钙石型硫酸盐破坏的影响[J]. 浙江大学学报(工学版), 2016, 50(8): 1479-1485.
[14] 熊海贝, 李奔奔, 江佳斐. FRP约束混凝土圆柱应力-应变模型的适用性[J]. 浙江大学学报(工学版), 2015, 49(12): 2363-2375.
[15] 段安, 张大伟, ALNAGGAR Mohammed. 微平面模型模拟ASR作用下混凝土力学行为[J]. 浙江大学学报(工学版), 2015, 49(10): 1939-1945.