Please wait a minute...
浙江大学学报(工学版)
土木与交通工程     
超细粉煤灰对碳硫硅钙石型硫酸盐破坏的影响
吴萌, 姬永生, 陈晓峰, 张领雷, 陈向东
1.中国矿业大学 深部岩土力学与地下工程国家重点试验室,江苏 徐州 221116;
2.中国矿业大学 力学与建筑工程学院,江苏 徐州 221116;
3.江苏建筑节能与建造技术协同创新中心,江苏 徐州 221116
Effects of superfine fly ash on thaumasite form of sulfate attack
WU Meng, JI Yong sheng, CHEN Xiao feng, ZHANG Ling lei
1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology; Xuzhou 221116, China; 
2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China; 
3. JiangSu Collaborative Innovation Center for Building Energy Saving and Construct Technology, Xuzhou 221116, China
 全文: PDF(1159 KB)   HTML
摘要:

通过将内掺不同质量分数硫酸镁的水泥-石灰石粉和水泥-石灰石粉粉煤灰净浆试件在5 ℃± 1 ℃的条件下长期浸泡,定期观测试件外观形貌变化,并对破坏产物进行X射线衍射(XRD)和红外光谱分析,研究超细粉煤灰火山灰效应对水泥基材料碳硫硅钙石型硫酸盐破坏的影响与作用机理.研究结果表明:当硫酸镁掺量较低时,水泥-石灰石粉-粉煤灰试件先于水泥-石灰石粉试件发生膨胀破坏|当硫酸镁掺量较高时,水泥-石灰石粉-粉煤灰试件和水泥-石灰石粉试件几乎同时发生碳硫硅钙石型硫酸盐破坏.这表明高活性超细粉煤灰的火山灰效应并不能起到抑制或者延缓碳硫硅钙石型硫酸盐破坏的作用.

Abstract:

The cement-limestone and cement-limestone-fly ash paste specimens mixed with different mass fractions of magnesium sulfate were immersed in water at 5℃±1℃ for a long time. The appearance of specimens was observed on a regular basis, and the corroded specimens were identified by X-ray diffraction and infrared spectral analysis. Research was conducted on effects and mechanism of the active pozzolanic effect of superfine fly ash on thaumasite form of sulfate attack to cement-based materials. Results indicate that when magnesium sulfate content is relatively low, cement-limestone-fly ash paste is more susceptive to expansion failure than cement-limestone paste; when magnesium sulfate content is high, both cement-limestone and cement-limestone-fly ash are susceptive to thaumasite form of sulfate attack simultaneously. This indicates that highly active pozzolanic effect of superfine fly ash cannot restrain or delay thaumasite form of sulfate attack.

出版日期: 2016-08-01
:  TU 528.01  
基金资助:

中央高校基本科研业务费专项资金资助项目(2015XKMS011);国家自然科学基金资助项目(51178455).

通讯作者: 姬永生,男,教授. ORCID: 0000-0002-3395-3313.     E-mail: jysbh@126.com.
作者简介: 吴萌(1988—),男,博士生,从事水泥基材料耐久性研究. ORCID: 0000-0003-4476-9690. E-mail: 626859273@qq.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吴萌, 姬永生, 陈晓峰, 张领雷, 陈向东. 超细粉煤灰对碳硫硅钙石型硫酸盐破坏的影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.08.008.

WU Meng, JI Yong sheng, CHEN Xiao feng, ZHANG Ling lei. Effects of superfine fly ash on thaumasite form of sulfate attack. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.08.008.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.08.008        http://www.zjujournals.com/eng/CN/Y2016/V50/I8/1479

[1] MULENGA D M, STARK J, NOBST P. Thaumasite formation in concrete and mortars containing fly ash [J]. Cement and Concrete Research, 2003, 25(8):907-912.
[2] SKAROPOULOU A, TSIVILIS S, KAKALI G, et al. Thaumasite form of sulfate attack in cement mortars: A study on long term efficiency of mineral admixtures [J]. Construction and Building Materials, 2009, 23(6):2338-2345.
[3] SKAROPOULOU A, TSIVILIS S, KAKALI G, et al. Use of mineral admixtures to improve the resistance of limestone cement concrete against thaumasite form of sulfate attack [J]. Cement and Concrete Composites, 2013, 37(3): 267-275.
[4] BELLMANN F, STARK J. Prevention of thaumasite formation in concrete exposed to sulphate attack [J]. Cement and Concrete Research, 2007, 37(8): 1215-1222.
[5] 马保国,高小建,罗忠涛.矿物掺合料对水泥砂浆TSA侵蚀的影响.材料科学与工程学报[J].2006, 24(2): 230-234.
MA Baoguo, GAO Xiaojian, LUO Zhongtao. Effects of mineral admixtures on thaumasite form of sulfate attack of cement mortars [J]. Journal of Materials Science&Engineering, 2006, 24(2): 230-234.
[6] 张靖,叶建雄,杨长辉,等.粉煤灰对水泥石抗碳硫硅钙石型硫酸盐腐蚀性能的影响[J].新型建筑材料.2010(4): 16-20.
ZHANG Jing, YE Jiangxiong, YANG Changhui, et al. Effect of fly ash on thaumasite form of sulfate attack of cementbased materials [J]. New Building Materials, 2010(4): 1620.
[7] 李长成,徐振然,陈同德.粉煤灰对碳硫硅钙石型硫酸盐侵蚀的影响[J]. 建筑材料学报. 2014, 17(4): 685-689.
LI Changcheng, XU Zhenran, CHEN Tongde. Effects of fly ash on sulfate attack [J]. Journal of Building Materials 2014, 17(4): 685-689.
[8] SACA N, GEORGESCU M. Behavior of ternary blended cements containing limestone filler and fly ash in magnesium sulfate solution at low temperature [J]. Construction and Building Materials, 2014, 71(11):246-253.
[9] MIRVALAD S, NOKKEN M. Minimum SCM requirements in mixtures containing limestone cement to control thaumasite sulfate attack [J]. Construction and Building Materials, 2015, 84(6): 19-29.
[10] TOSUN K, FELEKOGLU B, BARADAN B, et al. Effects of limestone replacement ratio on the resistance of Portland limestone cement mortars exposed to extraordinary high sulfate concentrations [J]. Construction and Building Materials, 2009, 23(7): 2534-2544.
[11] BARNETTA S J, MACPHEE D E, LACHOWSKI E, et al. XRD, EDX and IR analysis of solid solutions between thaumasite and ettringite [J]. Cement and Concrete Research, 2002, 32(5): 719-730.
[12] 彭文世,刘高魁.石膏及其热转变产物的红外光谱[J].矿物学报,1991,11(1): 27-32.
PENG Wenshi, LIU Gaokui. Infrared spectra of gypsum and its thermal transformation products [J]. Acta Mineralogica Sinica, 1991, 11(1): 27-32.
[13] 张颖, 任耕, 刘民生. 无机非金属材料研究方法[M]. 冶金工业大学出版社, 2011: 218.
[14] GRAMMOND N J. The thaumasitr form of sulfate attack in the UK [J]. Cement and Concrete Composites, 2003, 25(8): 809-818.
[15] BENSTED J. Thaumasitedirect, woodfordite and other possible formation routes [J]. Cement and Concrete Composites, 2003, 25(8): 873-877.
[16] SCHMIDT T, LOTHENBACH B, ROMER M, et al. Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements [J]. Cement and Concrete Research, 2009, 39(11): 1111-1121.
[17] LIU,Zanqun, DENG Dehua, SCHUTTER G D, et al. The effect of MgSO4 on thaumasite formation [J]. Cement and Concrete Composites, 2013, 35(1): 102-108.
[18] 肖佳,孟庆业,马保国,等.水泥基材料中碳硫硅钙石形成的热力学分析[J].建筑材料学报, 2015, 18(2): 263-268.
XIAO Jia, MENG Qingye,MA Baoguo, et, al. Analysis of thermodynamics of thaumasite formation in CementBased Materials [J]. Journal of Building Materials, 2015, 18(2): 263-268.
[1] 欧祖敏, 孙璐. 冻融损伤混凝土的弯曲疲劳寿命可靠性分析[J]. 浙江大学学报(工学版), 2017, 51(6): 1074-1081.
[2] 王雪松, 金贤玉, 田野, 李蓓, 金南国. 开裂混凝土中钢筋加速锈蚀方法适用性[J]. J4, 2013, 47(4): 565-574.
[3] 王雪松, 金贤玉, 田野, 金南国. 基于非均匀锈蚀的带肋钢筋黏结性能[J]. J4, 2013, 47(1): 154-161.
[4] 蒋梅玲, 金贤玉, 田野, 金南国. 基于断裂力学和损伤理论的混凝土开裂模型[J]. J4, 2011, 45(5): 948-953.
[5] 张慧莉, 田堪良. 矿渣聚丙烯纤维混凝土抗弯疲劳性能[J]. J4, 2011, 45(4): 699-707.