Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (5): 999-1009    DOI: 10.3785/j.issn.1008-973X.2021.05.021
土木工程、水利工程     
活性粉末混凝土冲击压缩性能及本构关系
谢磊(),李庆华*(),徐世烺
浙江大学 建筑工程学院,浙江 杭州 310058
Dynamic compressive properties and constitutive model of reactive powder concrete
Lei XIE(),Qing-hua LI*(),Shi-lang XU
School of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1936 KB)   HTML
摘要:

为了克服传统活性粉末混凝土(RPC)须高温蒸养的缺点,采用粒化高炉矿渣代替部分水泥制备出免蒸养RPC,利用直径为80 mm的霍普金森压杆试验系统(SHPB)对免蒸养RPC进行冲击压缩试验研究,探究率效应对免蒸养RPC动态力学性能的影响规律,建立动态本构模型. 结果表明:在10~290 $ {{\rm{s}}^{ - 1}}$的应变率范围内,免蒸养RPC的峰值应力、峰值应变和冲击韧性表现出明显的率敏感性,而弹性模量在不同应变率下基本保持不变. 改进型Z-W-T黏弹性本构模型和基于Weibull分布的模型均能对免蒸养RPC的动态应力-应变曲线进行较好的描述,基于Weibull分布的模型所含参数相对较少,根据模型中各参数与应变率之间的关系可以对不同应变率下的应力-应变曲线进行预测.

关键词: 活性粉末混凝土(RPC)霍普金森压杆试验系统(SHPB)应变率效应冲击压缩性能动态本构模型    
Abstract:

The granulated blast furnace slag was used to replace part of cement to prepare steam free reactive powder concrete (RPC), in order to overcome the disadvantage of traditional reactive powder concrete (RPC) that needs high temperature steam curing. The impact compression experiment of steam free RPC was carried out by using split Hopkinson pressure bar system (SHPB) with diameter of 80 mm, the influence of rate effect on the dynamic mechanical properties of steam free RPC was explored at the same time, and the dynamic constitutive model was established based on the experimental results. Results show that in the strain rate range of 10~290 $ {{\rm{s}}^{ - 1}}$, the peak stress, the peak strain and the impact toughness of the steam free RPC show obvious rate sensitivity, while the elastic modulus remains unchanged under different strain rates. On the aspect of constitutive model, both the improved Z-W-T viscoelastic constitutive model and the Weibull distribution-based model can well describe the dynamic stress-strain curve of steam free RPC. Due to the relatively fewer parameters Weibull distribution-based model contains, the stress-strain curve under different strain rates can be predicted based on the known relationship between parameters and strain rate in the model.

Key words: reactive powder concrete (RPC)    split Hopkinson pressure bar system (SHPB)    strain rate effect    dynamic compressive property    dynamic constitutive model
收稿日期: 2020-05-14 出版日期: 2021-06-10
CLC:  TU 528.572  
基金资助: 国家自然科学基金资助项目(51622811)
通讯作者: 李庆华     E-mail: 21712220@zju.edu.cn;liqinghua@zju.edu.cn
作者简介: 谢磊(1995―),男,博士生,从事水泥基材料动态力学性能研究. orcid.org/0000-0002-4613-5846. E-mail: 21712220@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
谢磊
李庆华
徐世烺

引用本文:

谢磊,李庆华,徐世烺. 活性粉末混凝土冲击压缩性能及本构关系[J]. 浙江大学学报(工学版), 2021, 55(5): 999-1009.

Lei XIE,Qing-hua LI,Shi-lang XU. Dynamic compressive properties and constitutive model of reactive powder concrete. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 999-1009.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.05.021        http://www.zjujournals.com/eng/CN/Y2021/V55/I5/999

图 1  动态测试试样外貌
图 2  霍普金森压杆装置示意图
图 3  不同冲击气压下的平均应力-应变曲线
图 4  峰值应力及DIF与应变率的关系
图 5  峰值应变与应变率的关系
图 6  不同类型超高性能混凝土材料的耗能对比
图 7  不同冲击气压下各阶段占比柱状图
图 8  非线性黏弹性本构模型
图 9  基于改进型Z-W-T模型的理论曲线与试验应力-应变曲线的对比
$ \dot{\varepsilon } $/ ${{\rm{s}}^{ - 1}}$ ${E^{'}}$/GPa ${E_2}$/GPa ${\theta _2}$/μs $m$ $n/ {10^{ - 3}}$ ${\varepsilon _{\rm{th}}}/{10^{ - 3}}$ $k$
10.57 287.360 ?174.1000 ?331.3900 0.8290 6.100 1.550 165.110
92.57 11.464 144.6740 9.7676 1.3390 1.030 2.247 41.889
140.10 ?6.563 146.8910 11.4730 0.9355 11.777 2.016 40.737
175.60 ?55.573 187.1640 15.8260 0.3990 106.628 2.205 174.509
200.27 ?50.976 178.6470 14.8670 0.4050 104.193 2.331 165.410
265.80 ?267.832 394.8950 34.2050 0.3240 88.225 3.240 176.505
289.43 ?112.749 244.3337 17.3725 0.3770 91.451 3.402 174.322
表 1  Z-W-T模型拟合参数
图 10  不同应变率下损伤随应变的变化曲线
图 11  不同应变率下的弹性模量
图 12  基于改进型Weibull分布的理论曲线与试验应力-应变曲线的对比
图 13  活性粉末混凝土动态应力-应变关系的预测结果与试验结果对比
1 RICHARD P, CHEYREZY M Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25 (7): 1501- 1511
doi: 10.1016/0008-8846(95)00144-2
2 MAROLIYA M K Micro structure analysis of reactive powder concrete[J]. International Journal of Engineering Research and Development, 2012, 4 (2): 68- 77
3 吴炎海, 何雁斌 活性粉末混凝土(RPC200)的配制试验研究[J]. 中国公路学报, 2003, (4): 45- 50
WU Yan-hai, HE Yan-bin Experimental study on the preparation of reactive powder concrete (RPC200)[J]. Chinese Journal of Highway and Transport, 2003, (4): 45- 50
4 郑文忠, 李莉 活性粉末混凝土配制及其配合比计算方法[J]. 湖南大学学报: 自然科学版, 2009, 36 (2): 13- 17
ZHENG Wen-zhong, LI Li The preparation of reactive powder concrete and the calculation method of its mixing ratio[J]. Journal of Hunan University: Natural Science Edition, 2009, 36 (2): 13- 17
5 SULEIMAN M T, VANDE V T, SRITHARAN S Behavior of driven ultrahigh-performance concrete H-piles subjected to vertical and lateral loadings[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136 (10): 1403- 1413
doi: 10.1061/(ASCE)GT.1943-5606.0000350
6 NGO T, MENDIS P, KRAUTHAMMER T Behavior of ultrahigh-strength prestressed concrete panels subjected to blast loading[J]. Journal of Structural Engineering, 2007, 133 (11): 1582- 1590
doi: 10.1061/(ASCE)0733-9445(2007)133:11(1582)
7 HOU X, CAO S, ZHENG W, et al Experimental study on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates[J]. Engineering Structures, 2018, 169: 119- 130
doi: 10.1016/j.engstruct.2018.05.036
8 王勇华, 梁小燕, 王正道, 等 活性粉末混凝土冲击压缩性能实验研究[J]. 工程力学, 2008, (11): 167- 172
WANG Yong-hua, LIANG Xiao-yan, WANG Zheng-dao, et al Experimental study on impact compression properties of reactive powder concrete[J]. Engineering Mechanics, 2008, (11): 167- 172
9 黄政宇, 王艳, 肖岩, 等 应用SHPB试验对活性粉末混凝土动力性能的研究[J]. 湘潭大学自然科学学报, 2006, (2): 113- 117
HUANG Zheng-yu, WANG Yan, XIAO Yan, et al Research on dynamic performance of reactive powder concrete by SHPB test[J]. Journal of Natural Science of Xiangtan University, 2006, (2): 113- 117
doi: 10.3969/j.issn.1000-5900.2006.02.025
10 任兴涛, 周听清, 钟方平, 等 钢纤维活性粉末混凝土的动态力学性能[J]. 爆炸与冲击, 2011, 31 (5): 540- 547
REN Xing-tao, ZHOU Ting-qing, ZHONG Fang-ping, et al Dynamic mechanical properties of steel fiber activated powder concrete[J]. Explosion and Shock, 2011, 31 (5): 540- 547
11 赖建中, 孙伟, 戎志丹 活性粉末混凝土在多次冲击荷载下的力学行为[J]. 爆炸与冲击, 2008, 28 (6): 532- 538
LAI Jian-zhong, SUN Wei, RONG Zhi-dan Mechanical behavior of reactive powder concrete under multiple impact loads[J]. Explosion and Impact, 2008, 28 (6): 532- 538
doi: 10.3321/j.issn:1001-1455.2008.06.009
12 YAZ?C? H, YARD?MC? M Y, YI?ITER H, et al Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag[J]. Cement and Concrete Composites, 2010, 32 (8): 639- 648
doi: 10.1016/j.cemconcomp.2010.07.005
13 何晓雁, 秦立达, 张淑艳, 等 基于正交理论的玄武岩纤维活性粉末混凝土配合比设计[J]. 硅酸盐通报, 2016, 35 (5): 1402- 1406
HE Xiao-yan, QIN Li-da, ZHANG Shu-yan, et al Mix design of basalt fiber reactive powder concrete based on orthogonal theory[J]. Bulletin of Silicates, 2016, 35 (5): 1402- 1406
14 龙广成, 陈瑜 RPC200的强度及收缩影响研究[J]. 工业建筑, 2002, (6): 4- 7
LONG Guang-cheng, CHEN Yu Study on the effect of factors on strength and shrinkage of RPC200[J]. Industrial Buildings, 2002, (6): 4- 7
doi: 10.3321/j.issn:1000-8993.2002.06.002
15 林清, 吴炎海, 姚良云 钢纤维活性粉末混凝土受压性能试验研究[J]. 福建建筑, 2005, (3): 95- 98
LIN Qing, WU Yan-hai, YAO Liang-yun Experimental research on compressive properties of steel fiber RPC[J]. Fujian Architecture, 2005, (3): 95- 98
16 孙蓓, 焦楚杰 自然养护活性粉末混凝土单轴受压的试验研究[J]. 工业建筑, 2019, 49 (2): 114- 118
SUN Bei, JIAO Chu-jie Experimental study on uniaxial compression of natural curing active powder concrete[J]. Industrial Construction, 2019, 49 (2): 114- 118
17 胡曙光, 彭艳周, 陈凯, 等 掺钢渣活性粉末混凝土的制备及其变形性能[J]. 武汉理工大学学报, 2009, 31 (1): 26- 29
HU Shu-guang, PENG Yan-zhou, CHEN Kai Preparation and deformation performance of reactive powder concrete (RPC) with steel slag powder[J]. Journal of Wuhan University of Technology, 2009, 31 (1): 26- 29
doi: 10.3963/j.issn.1671-4431.2009.01.008
18 KAI M, XIAO Y, SHUAI X L, et al Compressive behavior of engineered cementitious composites under high strain-rate loading[J]. Journal of Materials in Civil Engineering, 2016, 29 (4): 4016254
19 CHEN Z, YANG Y, YAO Y Quasi-static and dynamic compressive mechanical properties of engineered cementitious composite incorporating ground granulated blast furnace slag[J]. Materials and Design, 2013, 44: 500- 508
doi: 10.1016/j.matdes.2012.08.037
20 CHEN X, GE L, ZHOU J, et al Experimental study on split hopkinson pressure bar pulse-shaping techniques for concrete[J]. Journal of Materials in Civil Engineering, 2015, 4015196
21 CAO S, HOU X, RONG Q, et al Effect of specimen size on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates[J]. Construction and Building Materials, 2019, 194: 71- 82
doi: 10.1016/j.conbuildmat.2018.11.024
22 王立闻, 庞宝君, 盖秉政, 等 活性粉末混凝土高温后冲击压缩特性研究[J]. 工程力学, 2012, 29 (9): 245- 251
WANG Li-wen, PANG Bao-jun, GAI Bing-zheng, et al Research on impact compression properties of reactive powder concrete after high temperature[J]. Engineering Mechanics, 2012, 29 (9): 245- 251
doi: 10.6052/j.issn.1000-4750.2010.12.0938
23 TAI Y Uniaxial compression tests at various loading rates for reactive powder concrete[J]. Theoretical and Applied Fracture Mechanics, 2009, 52 (1): 14- 21
doi: 10.1016/j.tafmec.2009.06.001
24 王勇华. 活性粉末混凝土冲击压缩性能研究[D]. 北京: 北京交通大学, 2008.
WANG Yong-hua. Research on impact compression properties of reactive powder concrete [D]. Beijing: Beijing Jiaotong University, 2008.
25 WANG W, HU Y, REN X, et al. Experimental investigation on dynamic mechanical performances of granite [C]// International Society for Rock Mechanics and Rock Engineering, 2011.
26 DONG S, HAN B, OU J, et al Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete[J]. Cement and Concrete Composites, 2016, 72: 48- 65
doi: 10.1016/j.cemconcomp.2016.05.022
27 JIAO C, SUN W Impact resistance of reactive powder concrete[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2015, 30 (4): 752- 757
doi: 10.1007/s11595-015-1223-5
28 JIAO C, SUN W, HUAN S, et al Behavior of steel fiber-reinforced high-strength concrete at medium strain rate[J]. Frontiers of Architecture and Civil Engineering in China, 2009, 3 (2): 131- 136
doi: 10.1007/s11709-009-0027-0
29 ZHANG W, ZHANG Y, ZHANG G Single and multiple dynamic impacts behaviour of ultra-high performance cementitious composite[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2011, 26 (6): 1227- 1234
doi: 10.1007/s11595-011-0395-x
30 LAI J, SUN W Dynamic behaviour and visco-elastic damage model of ultra-high performance cementitious composite[J]. Cement and Concrete Research, 2009, 39 (11): 1044- 1051
doi: 10.1016/j.cemconres.2009.07.012
31 张华, 郜余伟, 李飞, 等 高应变率下聚丙烯纤维混凝土动态力学性能和本构模型[J]. 中南大学学报: 自然科学版, 2013, 44 (8): 3464- 3473
ZHANG Hua, GAO Yu-wei, LI Fei, et al Dynamic mechanical properties and constitutive model of polypropylene fiber concrete under high strain rate[J]. Journal of Central South University: Natural Science Edition, 2013, 44 (8): 3464- 3473
32 朱兆祥, 徐大本, 王礼立 环氧树脂在高应变率下的热黏弹性本构方程和时温等效性[J]. 宁波大学学报: 理工版, 1988, (1): 58- 68
ZHU Zhao-xiang, XU Da-ben, WANG Li-li Thermoviscoelastic constitutive equation and time-temperature equivalence of epoxy resin at high strain rate[J]. Journal of Ningbo University: Science and Technology Edition, 1988, (1): 58- 68
33 WANG Z, LIU Y, SHEN R Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression[J]. Construction and Building Materials, 2008, 22 (5): 811- 819
doi: 10.1016/j.conbuildmat.2007.01.005
34 ZHANG H, LIU Y, SUN H, et al Transient dynamic behavior of polypropylene fiber reinforced mortar under compressive impact loading[J]. Construction and Building Materials, 2016, 111: 30- 42
doi: 10.1016/j.conbuildmat.2016.02.049
35 李夕兵, 王世鸣, 宫凤强, 等 不同龄期混凝土多次冲击损伤特性试验研究[J]. 岩石力学与工程学报, 2012, 31 (12): 2465- 2472
LI Xi-bing, WANG Shi-ming, GONG Feng-qiang, et al Experimental study on multiple impact damage characteristics of concrete of different ages[J]. Journal of Rock Mechanics and Engineering, 2012, 31 (12): 2465- 2472
doi: 10.3969/j.issn.1000-6915.2012.12.010
36 ZHANG H, WANG B, XIE A, et al Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete[J]. Construction and Building Materials, 2017, 152: 154- 167
doi: 10.1016/j.conbuildmat.2017.06.177
37 DONG S, HAN B, YU X, et al Dynamic impact behaviors and constitutive model of super-fine stainless wire reinforced reactive powder concrete[J]. Construction and Building Materials, 2018, 184: 602- 616
doi: 10.1016/j.conbuildmat.2018.07.027
38 吴政, 张承娟 单向荷载作用下岩石损伤模型及其力学特性研究[J]. 岩石力学与工程学报, 1996, (1): 55- 61
WU Zheng, ZHANG Cheng-juan Research on rock damage model and its mechanical properties under unidirectional load[J]. Journal of Rock Mechanics and Engineering, 1996, (1): 55- 61
doi: 10.3321/j.issn:1000-6915.1996.01.008
[1] 熊海贝,曹纪兴,张凤亮. 含加强层框筒结构位移监测方法[J]. 浙江大学学报(工学版), 2016, 50(9): 1752-1760.
[2] 熊海贝, 李奔奔, 江佳斐. FRP约束混凝土圆柱应力-应变模型的适用性[J]. 浙江大学学报(工学版), 2015, 49(12): 2363-2375.