Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (12): 2317-2324    DOI: 10.3785/j.issn.1008-973X.2019.12.008
土木工程、水利工程     
基于双向电迁移的开裂混凝土除氯阻锈效果
元斐斌1,2(),金伟良1,2,毛江鸿2,*(),王金权3,樊玮洁2,夏晋1
1. 浙江大学 结构工程研究所,浙江 杭州 310058
2. 浙江大学宁波理工学院 土木建筑工程学院,浙江 宁波 315100
3. 宁波市杭州湾大桥发展有限公司,浙江 宁波 315317
Effect of chloride removal and corrosion prevention for cracked concrete based on bi-directional electro-migration rehabilitation
Fei-bin YUAN1,2(),Wei-liang JIN1,2,Jiang-hong MAO2,*(),Jin-quan WANG3,Wei-jie FAN2,Jin XIA1
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2. School of Civil Engineering and Architecture, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
3. Hangzhou Bay Cross-sea Bridge Development Co. Ltd, Ningbo 315317, China
 全文: PDF(1406 KB)   HTML
摘要:

采用双向电迁移(BIEM)方法对沿海环境下的开裂混凝土进行修复,以排除裂缝附近富集的氯离子,并对钢筋进行阻锈防护. 通过测定阻锈剂浓度、氯离子质量分数以及钢筋极化曲线,研究不同裂缝宽度下BIEM的作用效应,并通过氯离子迁移特征试验对氯离子的迁移规律加以验证. 试验结果表明:开裂混凝土双向电迁移后,钢筋腐蚀电位均能恢复至较高水平;当裂缝宽度较小时,混凝土保护层中氯离子的迁移规律与未裂混凝土相近;当裂缝宽度大于0.3 mm时,裂缝处的氯离子排出效率随裂缝宽度的增加有所提高,但离裂缝较远处的氯离子排出效率有所降低.

关键词: 混凝土耐久性裂缝宽度双向电迁移(BIEM)腐蚀电位氯离子阻锈剂    
Abstract:

The bi-directional electro-migration (BIEM) method was used to repair the cracked concrete in the marine environment, in order to eliminate the chloride enriched in the vicinity of the crack and to prevent corrosion of the steel bars. The effect of BIEM under different crack widths was studied by measuring the concentration of rust inhibitor, mass fraction of chloride ion and the polarization curve of reinforcement. The chloride migration law was verified by the chloride migration characteristic test. Results that the corrosion potential of the steel can be restored to a high level after BIEM of the cracked concrete. When the crack width is small, the migration law of chloride ion in concrete cover is similar to that of the uncracked concrete. When the cracked width in concrete is greater than 0.3 mm, the chloride ion discharge efficiency at the crack increases with the increase of the crack width, while the discharge efficiency of chloride ion farther from the crack decreases.

Key words: concrete durability    crack width    bi-directional electro-migration (BIEM)    corrosion potential    chloride    corrosion inhibitor
收稿日期: 2018-11-04 出版日期: 2019-12-17
CLC:  TU 375  
基金资助: 国家自然科学基金资助项目(51878610,51638013,51578490);浙江省自然科学基金资助项目(LY18E080003,LQ19E080012);宁波市自然科学基金资助项目(2018A610359,2017A310313)
通讯作者: 毛江鸿     E-mail: 21612162@zju.edu.cn;jhmao@nit.zju.edu.cn
作者简介: 元斐斌(1994—),男,硕士生,从事混凝土耐久性研究. orcid.org/0000-0002-8229-4588. E-mail: 21612162@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
元斐斌
金伟良
毛江鸿
王金权
樊玮洁
夏晋

引用本文:

元斐斌,金伟良,毛江鸿,王金权,樊玮洁,夏晋. 基于双向电迁移的开裂混凝土除氯阻锈效果[J]. 浙江大学学报(工学版), 2019, 53(12): 2317-2324.

Fei-bin YUAN,Wei-liang JIN,Jiang-hong MAO,Jin-quan WANG,Wei-jie FAN,Jin XIA. Effect of chloride removal and corrosion prevention for cracked concrete based on bi-directional electro-migration rehabilitation. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2317-2324.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.12.008        http://www.zjujournals.com/eng/CN/Y2019/V53/I12/2317

图 1  开裂混凝土双向电迁移(BIEM)原理示意图
图 2  开裂混凝土通电状态下电势分布示意图
编号 ρ /(kg·m?3)
水泥 砂子 石子 氯化钠
C30 206.7 406.7 633.3 1050 20.3
表 1  C30混凝土试件配合比
图 3  BIEM试件和氯离子迁移特征试验试件示意图
图 4  沿试件长度方向及保护层厚度方向取粉位置
图 5  BIEM前、后各裂缝宽度试件组的钢筋弱极化曲线
试件组 Ecorr /mV $ E'_{\rm{corr}}$/mV
单值 均值 单值 均值
A-0 ?480 ?463 ?180 ?172
?456 ?191
?455 ?145
A-0.1 ?431 ?430 ?162 ?166
?391 ?157
?468 ?180
A-0.3 ?430 ?437 ?157 ?161
?448 ?179
?432 ?146
A-0.5 ?484 ?457 ?182 ?166
?436 ?155
?452 ?162
A-0.7 ?476 ?491 ?142 ?160
?504 ?156
?494 ?183
A-1.0 ?501 ?470 ?158 ?149
?414 ?143
?494 ?147
表 2  双向电迁移(BIEM)前、后钢筋腐蚀电位
图 6  BIEM后混凝土保护层中氯离子的质量分数分布图(初始值为0.221 5%)
图 7  各试件显色边界线示意图
图 8  不同裂缝宽度试件的显色边界线分布
图 9  各试件氯离子质量分数为定值(0.03%)时的位置分布图
图 10  钢筋表面层不同位置处的氯离子质量分数对比
图 11  钢筋附近阻锈剂质量摩尔浓度对比
w/mm x0 /mm R w/mm x0 /mm R
0 0 28.36 0.1 0 26.54
20 27.16 20 26.24
60 28.80 60 25.24
0.3 0 33.05 0.5 0 31.97
20 27.99 20 27.24
60 28.60 60 28.93
0.7 0 36.49 1.0 0 45.13
20 20.72 20 15.13
60 17.70 60 10.8
表 3  钢筋附近阻锈剂与氯离子浓度比
1 陈肇元, 崔京浩, 朱金铨, 等 钢筋混凝土裂缝机理与控制措施[J]. 工程力学, 2006, 23 (a01): 86- 107
CHEN Zhao-yuan, CUI Jing-hao, ZHU Jin-quan, et al Analysis and control of cracking in reinforced concrete[J]. Engineering Mechanics, 2006, 23 (a01): 86- 107
2 DJERBI A, BONNET S, KHELIDJ A, et al Influence of traversing crack on chloride diffusion into concrete[J]. Cement and Concrete Research, 2008, 38 (6): 877- 883
doi: 10.1016/j.cemconres.2007.10.007
3 SAHMARAN M Effect of flexure induced transverse crack and self-healing on chloride diffusivity of reinforced mortar[J]. Journal of Materials Science, 2007, 42 (22): 9131- 9136
doi: 10.1007/s10853-007-1932-z
4 金祖权, 侯保荣, 赵铁军, 等 收缩裂缝对混凝土氯离子渗透及碳化的影响[J]. 土木建筑与环境工程, 2011, 33 (1): 7- 11
JIN Zu-quan, HOU Bao-rong, ZHAO Tie-jun, et al Influence of shrinkage cracks on chloride penetration and crabonation of concrete[J]. Journal of Civil Architectural and Environmental Engineering, 2011, 33 (1): 7- 11
doi: 10.11835/j.issn.1674-4764.2011.01.003
5 延永东, 金伟良, 王海龙 饱和状态下开裂混凝土内的氯离子输运[J]. 浙江大学学报: 工学版, 2011, 45 (12): 2127- 2133
YAN Yong-dong, JIN Wei-liang, WANG Hai-long Chloride ingression in cracked concrete under saturated state[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (12): 2127- 2133
6 POLDER R B Electrochemical chloride removal from concrete prisms containing chloride penetrated from sea water[J]. Construction and Building Materials, 1996, 10 (1): 83- 88
doi: 10.1016/0950-0618(95)00062-3
7 ORELLAN J C, ESCADEILLAS G, ARLIGUIE G Electrochemical chloride extraction: efficiency and side effects[J]. Cement and Concrete Research, 2004, 34 (2): 227- 234
doi: 10.1016/j.cemconres.2003.07.001
8 SAWADA S, PAGE C L, PAGE M M Electrochemical injection of organic corrosion inhibitors into concrete[J]. Corrosion Science, 2005, 47 (8): 2063- 2078
doi: 10.1016/j.corsci.2004.10.001
9 TANG J, HAN S, HUANG C, et al Investigation on inhibitor electromigration anticorrosion technology for reinforced concrete structure[J]. Advanced Materials Research, 2009, 79-82: 1025- 1028
doi: 10.4028/www.scientific.net/AMR.79-82.1025
10 XU C, JIN W L, HUANG N, et al Bidirectional electromigration of a corrosion inhibitor in chloride contaminated concrete[J]. Magazine of Concrete Research, 2015, 68 (9): 1- 12
11 许晨, 金伟良, 章思颖 氯盐侵蚀混凝土结构延寿技术初探Ⅱ: 混凝土中6种胺类有机物电迁移与阻锈性能[J]. 建筑材料学报, 2014, 17 (4): 572- 578
XU Chen, JIN Wei-liang, ZHANG Si-ying Preliminary study on service life extension of concrete structures under chloride environment: effectiveness of six amine-based inhibitors for steel in chloride-contaminated simulated concrete pore solutions[J]. Journal of Building Materials, 2014, 17 (4): 572- 578
doi: 10.3969/j.issn.1007-9629.2014.04.003
12 金伟良, 黄楠, 许晨, 等 双向电渗对钢筋混凝土修复效果的试验研究: 保护层阻锈剂、氯离子和总碱度的变化规律[J]. 浙江大学学报: 工学版, 2014, 48 (9): 1586- 1594
JIN Wei-liang, HUANG Nan, XU Chen, et al Experimental research on effect of bidirectional electromigration rehabilitation on reinforced concrete: concentration changes of inhibitor, chloride ions and total alkalinity[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (9): 1586- 1594
13 毛江鸿, 金伟良, 李志远, 等 氯盐侵蚀钢筋混凝土桥梁耐久性提升及寿命预测[J]. 中国公路学报, 2016, 29 (1): 61- 66
MAO Jiang-hong, JIN Wei-liang, LI Zhi-yuan, et al Durability improvement and service life prediction of reinforced concrete bridge under chloride attack[J]. China Journal of Highway and Transport, 2016, 29 (1): 61- 66
doi: 10.3969/j.issn.1001-7372.2016.01.008
14 RYU J S, OTSUKI N Crack closure of reinforced concrete by electrodeposition technique[J]. Cement and Concrete Research, 2002, 32 (1): 159- 164
doi: 10.1016/S0008-8846(01)00650-0
15 NISHIDA T , OTSUKI N , SAITO A . Development of improved electrodeposition method for repair of reinforced concrete structures [C] // 4th International Conference on the Durability of Concrete Structures. West Lafayette: ICDCS, 2014: 393−402.
16 姚武, 郑晓芳 电沉积法修复钢筋混凝土裂缝的试验研究[J]. 同济大学学报: 自然科学版, 2006, 34 (11): 1441- 1444
YAO Wu, ZHENG Xiao-fang Experimental study on crack repair of reinforced concrete by electrodeposition technique[J]. Journal of Tongji University: Natural Science, 2006, 34 (11): 1441- 1444
17 宋显辉, 张华, 李卓球 碳纤维增强混凝土裂纹钝化的有限元模拟与实验研究[J]. 华中科技大学学报: 城市科学版, 2003, 20 (3): 26- 29
SONG Xian-hui, ZHANG Hua, LI Zhuo-qiu Study of crack blunting in carbon fibre reinforced concrete and finite element simulation[J]. Journal of Huazhong University of Science and Technology: Urban Science Edition, 2003, 20 (3): 26- 29
18 金伟良, 郭柱, 许晨 电化学修复后钢筋极化状态分析[J]. 中国腐蚀与防护学报, 2013, 33 (1): 75- 80
JIN Wei-liang, GUO Zhu, XU Chen Polarization analysis of reinforced after electrochemical repair[J]. Journal of Chinese Society for Corrosion and Protection, 2013, 33 (1): 75- 80
19 ASsTM C876-91, Standard test method for half-cell potentials of uncoated reinforcing steel in concrete [S]. New York: ANSI, 1999.
[1] 宋鑫,樊玮洁,毛江鸿,金伟良. 基于多级电迁的混凝土内氯离子动态控制效果[J]. 浙江大学学报(工学版), 2021, 55(3): 511-518.
[2] 张雅婷,JefferyRoesler. 基于大比尺模型试验的连续配筋混凝土路面开裂研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1194-1201.
[3] 王海龙,吴远建,凌佳燕,孙晓燕. 锈蚀不锈钢筋与混凝土黏结性能退化[J]. 浙江大学学报(工学版), 2020, 54(5): 843-850.
[4] 宋迎宾, 徐金霞, 蒋林华, 谭启平, 梅友静. NO3-/NO2-插层MgAl-LDHs在混凝土模拟孔溶液中的阻锈性能[J]. 浙江大学学报(工学版), 2018, 52(12): 2397-2405.
[5] 戴理朝, 王磊, 张建仁, 羊日华. 钢绞线锈蚀产物填充及裂缝宽度预测[J]. 浙江大学学报(工学版), 2018, 52(1): 97-105.
[6] 许晨, 金伟良, 黄楠, 吴航通, 毛江鸿, 夏晋. 双向电渗对钢筋混凝土的修复效果实验——保护层表面强度变化规律[J]. 浙江大学学报(工学版), 2015, 49(6): 1128-1138.
[7] 金伟良,黄楠,许晨,毛江鸿. 双向电渗对钢筋混凝土修复效果的试验研究——保护层阻锈剂、氯离子和总碱度的变化规律[J]. 浙江大学学报(工学版), 2014, 48(9): 1586-1594.
[8] 高玖藜, 柳景青, 张土乔, 李聪, 蒋伟. 水中氯离子和腐植酸对管网铁释放的影响[J]. J4, 2013, 47(8): 1321-1328.
[9] 项贻强, 程坤, 郭冬梅, 李威, 林士旭. 基于热力耦合的钢筋混凝土锈胀开裂分析[J]. J4, 2012, 46(8): 1444-1449.
[10] 鲁彩凤, 袁迎曙, 季海霞, 姬永生. 海洋大气中氯离子在粉煤灰混凝土中的传输规律[J]. J4, 2012, 46(4): 681-690.
[11] 田浩,陈艾荣,陈亮. 寿命期内混凝土桥梁性能演变分析[J]. J4, 2012, 46(1): 52-57.
[12] 薛文, 金伟良, 横田弘. 养护条件与暴露环境对氯离子传输的耦合作用[J]. J4, 2011, 45(8): 1416-1422.
[13] 金伟良,许晨. 钢筋脱钝氯离子阈值快速测定新方法[J]. J4, 2011, 45(3): 520-525.
[14] 延永东, 金伟良, 王海龙. 饱和状态下开裂混凝土内的氯离子输运[J]. J4, 2011, 45(12): 2127-2133.
[15] 薛鹏飞, 项贻强. 修正的氯离子在混凝土中的扩散模型及其工程应用[J]. J4, 2010, 44(4): 831-.