Please wait a minute...
J4  2011, Vol. 45 Issue (3): 520-525    DOI: 10.3785/j.issn.1008-973X.2011.03.020
土木工程     
钢筋脱钝氯离子阈值快速测定新方法
金伟良,许晨
浙江大学 结构工程研究所,浙江 杭州310058
New fast test  method to determine chloride depassivation
threshold of rebar in concrete
JIN Wei-liang,XU Chen
Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF  HTML
摘要:

为了缩短钢筋脱钝氯离子阈值试验测试周期,基于混凝土中氯离子在电场加速作用下快速迁移的特性,提出一种钢筋脱钝氯离子阈值快速测定方法.该测试方法主要存在两大技术问题:外加电场电压确定和钢筋脱钝时刻的判别.为了证明该试验方法的可行性,设计了自然渗透实验进行对比.实验结果表明:电场加速实验能有效区分不同掺合料对氯离子阈值的影响.研究发现,由自然渗透实验测得的氯离子阈值略大于电场加速实验得到的氯离子阈值,两者比值为1.1~1.3,从而验证了该加速实验方法的可行性.

Abstract:

A fast test method to measure the chloride threshold by adding accelerated field was put forward to shorten the test cycle. Two technical problems of this test method were discussed:  one is voltage determination of external electric field, and the other is distinguishing depassivation of the rebar in concrete. In order to verify the feasibility of this method, two comparative experiments were  designed:  natural penetration experiment, and  chloride penetrating experiment by adding accelerated field. The results show that this quick experimental method can distinguish the influence of additional materials on chloride threshold. Furthermore, the chloride threshold value measured by the natural penetration experiment is a little bigger than the value measured by this quick method, and the ratio of them is about 1.1~1.3, which proved the feasibility of this fast test method.

出版日期: 2012-03-16
:  TU 503  
基金资助:

国家自然科学基金资助项目(50538070);国家“863”高技术研究发展计划资助项目(2006AA04Z422);国家科技支撑计划资助项目(2006BAJ03A02-02).

作者简介: 金伟良(1960-), 男, 浙江杭州人, 教授, 从事混凝土结构耐久性研究. E-mail: Jinwl@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

金伟良,许晨. 钢筋脱钝氯离子阈值快速测定新方法[J]. J4, 2011, 45(3): 520-525.

JIN Wei-liang,XU Chen. New fast test  method to determine chloride depassivation
threshold of rebar in concrete. J4, 2011, 45(3): 520-525.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.03.020        http://www.zjujournals.com/eng/CN/Y2011/V45/I3/520

[1] 金伟良, 赵羽习. 混凝土结构耐久性[M]. 北京: 科学出版社, 2002: 93-108.
[2] MAMMOLITI L, HANSSON C M, HOPE B B. Corrosion inhibitors in concrete Part IIEffect on chloride threshold values for corrosion of steel in synthetic pore solutions [J]. Cement and Concrete Research, 1999, 29(10):1583-1589.
[3] 刘玉,杜荣归,林昌健. 氯离子对模拟混凝土孔隙液中钢筋腐蚀行为的影响[J].电化学, 2008, 11(3):333-336.
LIU Yu, DU Ronggui, LIN Changjian. Effect of chloride ions on the corrosion behavior of reinforcing steel in simulated concrete pore solutions[J]. Electrochemistry, 2008, 11(3):333-336.
[4] 鲁道荣, 邓君和, 尤聿媛. 氯离子对碳钢在混凝土孔隙液中腐蚀行为的影响[J]. 合肥学院学报, 2006(16): 4-7.
LU Daorong, DENG Junhe, YOU Luyuan. The effect of chloride ions on corrosion of carbonize steel in simulated concrete pore solutions[J]. Journal of Hefei University: Natural Sciences, 2006(16): 4-7.
[5] 刘晓敏, 史志明, 林海潮, 等. 钢筋在混凝土模拟孔隙液中腐蚀电化学行为[J]. 腐蚀科学与防腐技术, 1997, 9(2):140-143.
LIU Xiaomin, SHI Zhiming, LIN Haichao, et al. Electrochemical corrosion behavior of rebar in simulated pore solution[J]. Corrosion Science and Protection Technology, 1997, 9(2):140-143.
[6] 陈卿, 宋晓冰, 翟之阳. 混凝土模拟孔隙液中钢筋腐蚀临界氯离子浓度试验研究[J]. 四川建筑科学研究, 2008, 34(6):156-162.
CHEN Qing, SONG Xiaobing, ZHAI Zhiyang. Experimental research on chloride threshold level of steelcorrosion in simulated concrete solution[J]. Sichuan Building Science, 2008, 34(6):156-162.
[7] REOU J S, ANN K Y. Electrochemical assessment on the corrosion risk of steel embedment in OPC concrete depending on the corrosion detection techniques [J]. Materials Chemistry and Physics, 2009, 113(1): 78-84.
[8] XU Jinxia, JIANG Linhua, WANG Jingxiang. Influence of detection methods on chloride threshold value for the corrosion of steel reinforcement [J]. Construction and Building Materials, 2009, 23(5):1902-1908.
[9] VEDALAKSHMI R, RAJAGOPAL L, PALANISWAMY N. Longterm corrosion performance of rebar embedded in blended cement concrete under macro cell corrosion condition [J]. Construction and Building Materials, 2008, 22(3): 186-199.
[10] CASTELLOTE M, ANDRADE C, ALONSO C. Accelerated simultaneous determination of the chloride depassivation threshold and of the nonstationary diffusion coeffcient values[J]. Corrosion Science, 2002,44(11):2409-2424.
[11] 高仁辉, 秦鸿根, 庞超明. 粉煤灰掺量、氯离子含量、和pH值对混凝土中钢筋锈蚀的影响[J]. 混凝土与水泥制品,2005(1):1-4.
GAO Renhui, QIN Honggen, PANG Chaoming. Influence of flyash content, Cl concentration and pH value on steel corrosion in concrete[J]. China Concrete and Cement Products, 2005(1): 1-4.
[12] 许晨, 金伟良. 混凝土中钢筋脱钝的电化学弱极化判别方法[J]. 交通科学与工程, 2009,25(4):31-36.
XU Chen, JIN Weiliang. Distinguish depassivation of rebar in concrete with weak polarization method[J]. Journal of Transport Science and Engineering, 2009,25(4):31-36.
[13] 李佩珍,谢慧才. RCT: 快速氯离子检测方法及其应用[J]. 混凝土, 2000(12) :46-48.
LI Peizhen, XIE Huicai. RCTThe rapid chloride test and its applications [J]. Concrete, 2000(12): 46-48.
[14] MARCO M, YSTEIN V, LUCA B. Chloride threshold for rebar corrosion in concrete with addition of silica fume[J]. Corrosion Science, 2008,50(2):554-560.
[15] ANN K Y, SONG H W. Chloride threshold level for corrosion of steel in concrete[J]. Corrosion Science, 2007,49(11):4113-4133.
[16] ALONSO C, ANDRADE C, CASTELLOTE M, et al. Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar[J]. Cement and Concrete Research, 2000, 30(7):1047-1055.
[17] ALONSO C, CASTELLOTE M, ANDRADE C. Chloride threshold dependence of pitting potential of reinforcements[J]. Electrochimica Acta, 2002, 47(21): 3469-3481.

[1] 童芸芸, BOUTEILLER Véronique, MARIE-VICTOIRE Elisabeth, JOIRET Suzanne. 钢筋腐蚀程度对电化学再碱化处理效果的影响[J]. J4, 2011, 45(11): 1991-1996.
[2] 童芸芸, BOUTEILLER Véronique, MARIEVICTOIRE Elisabeth,JOIRET Suzanne. 外加电源式再碱化处理的耐久性探究[J]. J4, 2011, 45(9): 1664-1671.