Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (5): 851-857    DOI: 10.3785/j.issn.1008-973X.2020.05.002
土木工程、交通工程     
超高韧性水泥基复合材料的波传播试验研究
李庆华(),舒程岚青
浙江大学 建筑工程学院,浙江 杭州 310058
Experimental study on stress wave propagation in ultra high toughness cementitious composites
Qing-hua LI(),Cheng-lan-qing SHU
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(954 KB)   HTML
摘要:

为了研究超高韧性水泥基复合材料(UHTCC)中应力波的传播特性,采用Hopkinson杆加载UHTCC试件,测得UHTCC在0.2、0.3、0.4、0.5 MPa冲击气压下的应力波信号. 通过对比入射杆波形,验证相同加载条件下加载波形的一致性. 分别采用两点法和峰值法计算每种冲击气压下UHTCC中应力波的波速,结果显示,两点法适用性较广,计算结果较稳定,利用峰值法测波速则需要入射杆和试件波阻抗相近. 计算结果显示,UHTCC中应力波波速、衰减系数随冲击气压均无明显变化,平均波速为3.060 km/s,平均衰减系数为2.777 m?1. 可以利用朱-王-唐本构模型参数表达材料中应力波的波速和衰减,也可以利用实测的波速和衰减系数将UHTCC的朱-王-唐冲击本构模型表示为只含单个准静态参数的方程,从而提供通过试验直接确定UHTCC动态本构的方法.

关键词: 应力波波速超高韧性水泥基复合材料(UHTCC)衰减朱-王-唐本构模型    
Abstract:

The ultra high toughness cementitious composite (UHTCC) specimens were loaded with Hopkinson bar, and the stress wave signals in UHTCC under impact pressure of 0.2, 0.3, 0.4, 0.5 MPa were measured, in order to study the propagation characteristics of stress waves in UHTCC. The consistency of the loading waveforms under the same loading conditions was verified by comparing the incident bar waveforms. The stress wave speeds in UHTCC under different impact pressures were calculated by two methods, i.e. two point method and peak value method. Results show that the two point method is more applicable and the calculation results are relatively stable. However, the peak value method requires similar wave impedance of the incident bar and the specimen. Calculation results show that the stress wave speed and attenuation coefficient in UHTCC do not change significantly with the impact pressure, and the average wave speed is 3.060 km/s, as well as the average attenuation coefficient is 2.775 m?1. The wave speed and attenuation of stress waves in material can be expressed by parameters of Zhu-Wang-Tang constitutive model. Correspondingly, the measured wave speed and attenuation coefficient can represent the Zhu-Wang-Tang impact constitutive model of UHTCC as an equation with a single quasi-static parameter. An experimental method to determine the dynamic constitutive of UHTCC directly is provided.

Key words: stress wave    wave speed    ultra high toughness cementitious composite (UHTCC)    attenuation    Zhu-Wang-Tang constitutive model
收稿日期: 2019-04-22 出版日期: 2020-05-05
CLC:  TU 528  
基金资助: 国家自然科学基金资助项目(51622811,51678522)
作者简介: 李庆华(1981―),女,教授,从事新材料结构、防护力学研究. orcid.org/0000-0003-2694-1936. E-mail: liqinghua@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李庆华
舒程岚青

引用本文:

李庆华,舒程岚青. 超高韧性水泥基复合材料的波传播试验研究[J]. 浙江大学学报(工学版), 2020, 54(5): 851-857.

Qing-hua LI,Cheng-lan-qing SHU. Experimental study on stress wave propagation in ultra high toughness cementitious composites. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 851-857.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.05.002        http://www.zjujournals.com/eng/CN/Y2020/V54/I5/851

材料 ρB/(kg·m?3 材料 ρB/(kg·m?3
胶凝材料 1 265.0 微型钢纤维 78.0
448.0 PVA 28.7
370.3 减水剂 7.3
纳米SiO2 40.0 ? ?
表 1  UHTCC材料配合比
图 1  UHTCC应力波传播试验装置
图 2  入射杆实测波形对比
图 3  不同冲击气压下的典型波形图
I/MPa ?L/mm ?t/μs C/(km·s?1) C0/(km·s?1)
0.18 300 97.8 3.067 3.074
0.20 300 102.4 2.930
0.25 300 93.0 3.226
0.30 300 102.6 2.924 3.037
0.30 300 94.8 3.165
0.30 300 102.4 2.930
0.30 300 105.6 2.841
0.33 300 90.2 3.326
0.40 300 102.2 2.935 3.076
0.40 300 86.6 3.464
0.40 300 104.4 2.874
0.40 300 99.0 3.030
0.45 300 96.4 3.112 3.062
0.50 300 97.2 3.086
0.50 225 66.2 3.399
0.50 300 105.2 2.852
0.50 300 104.8 2.863
表 2  两点法得到的波速计算表
I/MPa UI/V UR/V C2/(km·s?1
0.18 0.637 60 ?0.574 7 1.263 8
0.18 0.127 30 ?0.121 8 0.538 0
0.25 0.216 10 ?0.191 8 1.449 5
0.30 2.538 40 ?2.292 2 1.240 9
0.45 3.296 96 ?2.782 0 2.063 1
表 3  峰值法得到的波速计算结果
图 4  入射杆上一点处的典型波形
图 5  朱-王-唐本构物理模型
1 王礼立. 应力波基础[M]. 北京: 国防工业出版社, 1985.
2 王礼立, 胡时胜, 杨黎明, 等. 材料动力学[M]. 合肥: 中国科技大学出版社, 2017.
3 BACON C An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar[J]. Experimental Mechanics, 1998, 38 (4): 242- 249
doi: 10.1007/BF02410385
4 SIVIOUR C R A measurement of wave propagation in the split Hopkinson pressure bar[J]. Measurement Science and Technology, 2009, 20 (6): 1- 5
5 JU Y, YANG Y M, MAO Y Z, et al Laboratory investigation on mechanisms of stress wave propagations in porous media[J]. Science in China: Series E: Technological Sciences, 2009, 52 (5): 1374- 1389
doi: 10.1007/s11431-009-0128-y
6 胡时胜, 张磊, 武海军, 等 混凝土材料层裂强度的实验研究[J]. 工程力学, 2004, 21 (4): 128- 132
HU Shi-sheng, ZHANG Lei, WU Hai-jun, et al Experimental study on spalling strength of concrete[J]. Engineering Mechanics, 2004, 21 (4): 128- 132
doi: 10.3969/j.issn.1000-4750.2004.04.023
7 赖建中, 孙伟 活性粉末混凝土的层裂性能研究[J]. 工程力学, 2009, 26 (1): 137- 141
LAI Jian-zhong, SUN Wei The spalling behaviour of reactive powder concrete[J]. Engineering Mechanics, 2009, 26 (1): 137- 141
8 KLEPACZKO J R, BRARA A An experimental method for dynamic tensile testing of concrete by spalling[J]. International Journal of Impact Engineering, 2001, 25 (4): 387- 409
doi: 10.1016/S0734-743X(00)00050-6
9 王礼立, PLUVINAGE G, LABIBES K 冲击载荷下高聚物动态本构关系对黏弹性波传播特性的影响[J]. 宁波大学学报:理工版, 1995, 8 (3): 30- 57
WANG Li-li, PLUVINAGE G, LABIBES K The influence of dynamic constitutive relations of polymers at impact loading on the viscoelastic wave propagation character[J]. Journal of Ningbo University: Natural Science and Engineering Edition, 1995, 8 (3): 30- 57
10 FAN L F, WONG L N Y, MA G W Experimental investigation and modeling of viscoelastic behavior of concrete[J]. Construction and Building Materials, 2013, 48: 814- 821
doi: 10.1016/j.conbuildmat.2013.07.010
11 GEORGIN J F, REYNOUARD J M Modeling of structures subjected to impact: concrete behaviour under high strain rate[J]. Cement and Concrete Composites, 2003, 25 (1): 131- 143
doi: 10.1016/S0958-9465(01)00060-9
12 WANG L L, ZHOU F H, SUN Z J, et al Studies on rate-dependent macro-damage evolution of materials at high strain rates[J]. International Journal of Damage Mechanics, 2010, 19 (7): 805- 820
doi: 10.1177/1056789509359654
13 ZHANG H, WANG B, XIE A Y, et al Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete[J]. Construction and Building Materials, 2017, 152: 154- 167
doi: 10.1016/j.conbuildmat.2017.06.177
14 胡时胜, 王道荣 冲击载荷下混凝土材料的动态本构关系[J]. 爆炸与冲击, 2002, 22 (3): 242- 246
HU Shi-sheng, WANG Dao-rong Dynamic constitutive relation of concrete under impact[J]. Explosion and Shock Waves, 2002, 22 (3): 242- 246
doi: 10.3321/j.issn:1001-1455.2002.03.009
15 LAI J Z, SUN W Dynamic behaviour and visco-elastic damage model of ultra-high performance cementitious composite[J]. Cement and Concrete Research, 2009, 39 (11): 1044- 1051
doi: 10.1016/j.cemconres.2009.07.012
16 ZHANG H, WANG L, ZHENG K, et al Research on compressive impact dynamic behavior and constitutive model of polypropylene fiber reinforced concrete[J]. Construction and Building Materials, 2018, 187: 584- 595
doi: 10.1016/j.conbuildmat.2018.07.164
17 XU S L, CAI X R Experimental study and theoretical models on compressive properties of ultrahigh toughness cementitious composites[J]. Journal of Materials in Civil Engineering, 2010, 22 (10): 1067- 1077
doi: 10.1061/(ASCE)MT.1943-5533.0000109
18 徐世烺, 李贺东 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41 (6): 45- 60
XU Shi-lang, LI He-dong A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008, 41 (6): 45- 60
doi: 10.3321/j.issn:1000-131X.2008.06.008
19 LI V C, WANG S X, WU C Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98 (6): 483- 492
20 CUROSU I, MECHTCHERINE V, FORNI D, et al Performance of various strain-hardening cement-based composites (SHCC) subject to uniaxial impact tensile loading[J]. Cement and Concrete Research, 2017, 102: 16- 28
doi: 10.1016/j.cemconres.2017.08.008
21 KANG S, KIM J The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC)[J]. Cement and Concrete Research, 2011, 41 (10): 1001- 1014
doi: 10.1016/j.cemconres.2011.05.009
22 LI V C, WU C, WANG S X, et al Interface tailoring for strain-hardening polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2002, 99 (5): 463- 472
23 徐世烺, 李贺东 超高韧性水泥基复合材料直接拉伸试验研究[J]. 土木工程学报, 2009, 42 (9): 32- 41
XU Shi-lang, LI He-dong Uniaxial tensile experiments of ultra-high toughness cementitious composite[J]. China Civil Engineering Journal, 2009, 42 (9): 32- 41
doi: 10.3321/j.issn:1000-131X.2009.09.005
24 WILLE K, EL-TAWIL S, NAAMAN A E Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites, 2014, 48: 53- 66
doi: 10.1016/j.cemconcomp.2013.12.015
25 YU K Q, LI L Z, YU J T, et al Direct tensile properties of engineered cementitious composites: a review[J]. Construction and Building Materials, 2018, 165: 346- 362
doi: 10.1016/j.conbuildmat.2017.12.124
26 高翔. 纳米SiO2改性超高韧性水泥基复合材料试验研究[D]. 杭州: 浙江大学, 2016.
GAO Xiang. Experimental study on ultra high toughness cementitious composites with nano-SiO2 [D]. Hangzhou: Zhejiang University, 2016.
27 刘问. 超高韧性水泥基复合材料动态力学性能的试验研究[D]. 大连: 大连理工大学, 2012.
LIU Wen. Experimental study on dynamic mechanical properties of ultra-high toughness cementitious composites [D]. Dalian: Dalian University of Technology, 2012.
28 LI Q H, ZHAO X, XU S L, et al Influence of steel fiber on dynamic compressive behavior of hybrid fiber ultra high toughness cementitious composites at different strain rates[J]. Construction and Building Materials, 2016, 125: 490- 500
doi: 10.1016/j.conbuildmat.2016.08.066
29 王礼立, 王永刚 应力波在用SHPB研究材料动态本构特性中的重要作用[J]. 爆炸与冲击, 2005, 25 (1): 17- 25
WANG Li-li, WANG Yong-gang The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB[J]. Explosion and Shock Waves, 2005, 25 (1): 17- 25
doi: 10.3321/j.issn:1001-1455.2005.01.004
[1] 夏莹杰,欧阳聪宇. 面向高速公路抛洒物检测的动态背景建模方法[J]. 浙江大学学报(工学版), 2020, 54(7): 1249-1255.
[2] 郑音飞,覃永贵,安继业,付文鑫. 热释电效应与超声衰减结合的离体温度估计[J]. 浙江大学学报(工学版), 2020, 54(1): 189-195.
[3] 卜宪标,冉运敏,王令宝,雷军民,李华山. 单井地热供暖关键因素分析[J]. 浙江大学学报(工学版), 2019, 53(5): 957-964.
[4] 郭来功, 戴广龙, 杨本才, 薛俊华, 陈本良. 基于微震成像的采煤工作面应力异常监测[J]. 浙江大学学报(工学版), 2018, 52(10): 2014-2022.
[5] 陈琛, 孙可旭, 冯建宇, 奚剑雄, 何乐年. 超低功耗无片外电容的低压差线性稳压器[J]. 浙江大学学报(工学版), 2017, 51(8): 1669-1675.
[6] 李聪,赵敬国,杨玉龙,赵桃桃. 紫外线消毒对砂滤水中余氯及三卤甲烷的影响[J]. 浙江大学学报(工学版), 2016, 50(3): 536-544.
[7] 黄博,李玲,凌道盛,陈星耀. 附加衰减模式及其对场地地震响应影响[J]. 浙江大学学报(工学版), 2014, 48(7): 1170-1179.
[8] 胡安峰, 张光建, 贾玉帅, 张晓冬. 刚度衰减模型在大直径桩累积侧向位移分析中的应用[J]. J4, 2014, 48(4): 721-726.
[9] 谢中凯,刘国华. 近似熵在混凝土结构损伤识别中的应用[J]. J4, 2013, 47(3): 456-464.
[10] 胡安峰, 孙波, 谢康和, 贾玉帅. 交通荷载作用下软土地基的累积沉降分析[J]. J4, 2013, 47(11): 1939-1944.
[11] 陈岭,许晓龙,杨清,陈根才. 基于三次样条插值的无线信号强度衰减模型[J]. J4, 2011, 45(9): 1521-1527.
[12] 陈馨蕊, 郝志勇, 杨陈. 镁合金AZ31阻尼性能的实验研究[J]. J4, 2010, 44(1): 19-22.
[13] 张土乔 王鸿翔 郭帅. 给水管网水质模型管壁余氯衰减系数校正[J]. J4, 2008, 42(11): 1977-1982.
[14] 刘继忠 周晓军 华志恒. 碳纤维复合材料孔隙率的脉冲反射法超声衰减测试模型[J]. J4, 2006, 40(11): 1878-1882.
[15] . 电控可调光衰减器性能及分析[J]. J4, 2005, 39(10): 1553-1556.