Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (1): 189-195    DOI: 10.3785/j.issn.1008-973X.2020.01.022
生物医学工程、化学工程     
热释电效应与超声衰减结合的离体温度估计
郑音飞(),覃永贵,安继业,付文鑫
浙江大学 生物医学工程教育部重点实验室,浙江 杭州 310027
Ex vivo estimation of temperature combined with pyroelectric effect and ultrasound attenuation
Yin-fei ZHENG(),Yong-gui QIN,Ji-ye AN,Wen-xin FU
Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1228 KB)   HTML
摘要:

针对不规则介质引起的超声信号方向改变对超声测温的影响,提出结合热释电传感器和衰减系数温变性的超声测温方法. 构建并论证由超声、待测体和热释电传感器组成的测温模型. 设计制作具有高吸声特性的传感器,评价该传感器的超声信号的响应性能. 结果显示,传感器的输出电压与到达的超声功率成正比,功率灵敏度为3.117 mV/W,测量误差小于2.5%. 通过估计离体猪肉组织温度验证测温方法的准确性,传感器的输出信号时域能量与组织温度的相关性达到0.975 5,该方法估计的温度与热电偶测量值基本一致,估计误差小于3.95 °C. 实验结果表明,利用热释电传感器与超声能够测量出组织的温度的变化.

关键词: 超声测温热释电传感器衰减系数    
Abstract:

An ultrasonic temperature measurement method combining pyroelectric sensor and temperature-dependent attenuation coefficient was proposed aiming at the influence of the change of ultrasonic signal direction on ultrasonic temperature measurement caused by inhomogeneous medium. A temperature measurement model consisting of ultrasound, test object and pyroelectric sensor was constructed and demonstrated. A sensor with high sound absorption characteristics was designed and fabricated in order to evaluate its response to the ultrasonic signal. Results showed that the output voltage of the sensor was proportional to the reached ultrasonic power. The power sensitivity was 3.117 mV/W, and the measurement error was less than 2.5%. The accuracy of the temperature measurement method was evaluated by estimating the temperature of the pork. The correlation between the sensor output signal time domain energy and the tissue temperature was 0.975 5. The estimated temperature value of the method was basically the same as that of the thermocouple, and the estimated error was less than 3.95 °C. The experimental results show that the pyroelectric sensor and ultrasound can measure the temperature change of the tissue.

Key words: ultrasound thermometry    pyroelectric effect    attenuation coefficient
收稿日期: 2019-03-30 出版日期: 2020-01-05
CLC:  R 445  
基金资助: 国家重点研发计划资助项目(2016YFF0201000,2018YFC0114900,2018YFF0213000);中央高校基本科研业务费专项资金资助项目(2018FZA5016)
作者简介: 郑音飞(1980—),男,副教授,从事医学超声的研究. orcid.org/0000-0001-6837-2634. E-mail: zyfnjupt@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
郑音飞
覃永贵
安继业
付文鑫

引用本文:

郑音飞,覃永贵,安继业,付文鑫. 热释电效应与超声衰减结合的离体温度估计[J]. 浙江大学学报(工学版), 2020, 54(1): 189-195.

Yin-fei ZHENG,Yong-gui QIN,Ji-ye AN,Wen-xin FU. Ex vivo estimation of temperature combined with pyroelectric effect and ultrasound attenuation. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 189-195.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.01.022        http://www.zjujournals.com/eng/CN/Y2020/V54/I1/189

图 1  超声测温示意图
图 2  超声入射传感器示意图
图 3  无限小的圆环热源对薄膜-背衬界面的影响
图 4  热释电传感器的等效电路图
图 5  热释电传感器结构示意图
参数 数值
Ds/mm 15
dPVDF/μm 50
pc/(μC·K?1 ·m?2 40
αPVDF/(dB·cm?1 9.4
α/(dB·cm?1 64
ρ2/(kg·m?3 1 910
c2/(m·s?1 1 000
κ/(W·m?1 ·K?1 0.334
C/nF 12.7
表 1  热释电传感器参数
图 6  测温实验示意图
图 7  换能器驱动功率为7 W时的热释电信号
图 8  相同条件下5次测量的传感器输出信号
图 9  超声照射时间为2、4、6、8 s时传感器的输出信号
图 10  5组不同驱动功率下传感器输出的信号峰值
图 11  传感器信号能量与组织温度的关系
图 12  估计温度值与热电偶测量值
1 NOVAK P Noninvasive temperature monitoring using ultra-sound tissue characterization method[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2001, 4325: 566- 574
2 ALVARENGA A V, WILKENS V, GEORG O, et al Non-invasive estimation of temperature during physiotherapeutic ultrasound application using the average gray-level content of B-mode images: a metrological approach[J]. UltraSound in Medicine and Biology, 2017,
3 JOO C M, SITARAMANJANEYA R G, JOO M L, et al Changes in ultrasonic properties of liver tis-sue in-vitro during heating-cooling cycle concomitant with thermal coagulation[J]. Ultrasound in Medicine and Biology, 2011, 37 (12): 2000- 2012
doi: 10.1016/j.ultrasmedbio.2011.06.015
4 ARTHUR R M, STRAUBE W L, TROBAUGH J W Non-invasive estimation of hyperthermia temperatures with ultra-sound[J]. International Journal of Hyperthermia the Official Journal of European Society for Hyperthermic Oncology North American Hyperthermia Group, 2005, 21 (6): 589- 600
doi: 10.1080/02656730500159103
5 SEIP R, EBBINI E S Noninvasive estimation of tissue tem-perature response to heating fields using diagnostic ultrasound[J]. IEEE Transactions on Biomedical Engineering, 1995, 42 (8): 828- 839
doi: 10.1109/10.398644
6 KIM Y, AUDIGIER C, ZIEGLE J Ultrasound thermal monitoring with an external ultrasound source for customized bipolar RF ablation shapes[J]. International Journal of Computer Assisted Radiology and Surgery, 2018, 13 (6): 815- 826
doi: 10.1007/s11548-018-1744-4
7 LIU X, GONG X, YIN C Noninvasive estimation of temperature elevations in biological tissues using acoustic nonlinearity parameter imaging[J]. Ultrasound in Medicine and Biology, 2008, 34 (3): 414- 424
doi: 10.1016/j.ultrasmedbio.2007.09.006
8 ARTHUR R M, DEBOMITA B, YUZHENG G 3D in vitro estimation of temperature using the change in backscattered ultrasonic energy[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2010, 57 (8): 1724
doi: 10.1109/TUFFC.2010.1611
9 牛金海, 张红煊, 王鸿樟 基于离散随机介质平均散射声功率的无损测温方法[J]. 声学学报, 2001, 26 (3): 247- 253
NIU Jin-hai, ZHANG Hong-xuan, WANG Hong-zhang Non-invasive temperature estimation in biotissue as a discrete random medium based on backscattered average ultrasonic power[J]. Chinese Journal of Acoustics, 2001, 26 (3): 247- 253
doi: 10.3321/j.issn:0371-0025.2001.03.010
10 CLARKE R L, BUSH N L, HAAR G R T The changes in acoustic attenuation due to in vitro heating[J]. Ultrasound in Medicine and Biology, 2003, 29 (1): 127- 135
doi: 10.1016/S0301-5629(02)00693-2
11 FüZESI K, ILYINA N, VERBOVEN E Temperature de-pendence of speed of sound and attenuation of porcine left ventricular myocardium[J]. Ultrasonics, 2017, 82: 246- 251
12 CUCCARO R, MAGNETTO C, ALBO P A G Temperature increase dependence on ultrasound attenuation coefficient in innovative tissue-mimicking materials[J]. Physics Procedia, 2015, 70: 187- 190
doi: 10.1016/j.phpro.2015.08.109
13 NYBORG W L, HILL C R, BAMBER J C Physical princi-ples of medical ultrasonics[J]. Journal of the Acoustical Society of America, 2004, 116 (12): 2707
14 BUSSE L J Detection of spatially non-uniform ultrasonic radiation with phase sensitive (piezoelectric) and phase in-sensitive (acoustoelectric) receivers[J]. Journal of the Acoustical Society of America, 1981, 70 (5): 1377- 1386
doi: 10.1121/1.387128
15 LI X, LU S G, CHEN X Z Pyroelectric and electrocaloric materials[J]. Journal of Materials Chemistry C, 2012, 1 (1): 23- 37
16 NYBORG W L Solutions of the bio-heat transfer equation[J]. Physics in Medicine and Biology, 1988, 33 (7): 785- 792
doi: 10.1088/0031-9155/33/7/002
17 AL ABDULLAH K, BATAL M A, HAMDAN R The en-hancement of PVDF pyroelectricity (pyroelectric coefficient and dipole moment) by inclusions[J]. Energy Procedia, 2017, 119: 545- 555
doi: 10.1016/j.egypro.2017.07.074
18 ZEQIRI B, ZAUHAR G, HODNETT M Progress in devel-oping a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect[J]. Ultrasonics, 2011, 51 (4): 420- 424
doi: 10.1016/j.ultras.2010.09.006
19 POUCH A M, CARY T W, SCHULTZ S M In vivo nonin-vasive temperature measurement by B-mode ultrasound imaging[J]. Journal of Ultrasound in Medicine: Official Journal of the American Institute of Ultrasound in Medicine, 2010, 29 (11): 1595- 1606
20 DANIELS M J, TOMY V Dynamic frame selection for in vivo ultrasound temperature estimation during radiofrequency ablation[J]. Physics in Medicine and Biology, 2010, 55 (16): 4735- 4753
doi: 10.1088/0031-9155/55/16/008
21 盛磊, 吴薇薇, 周著黄 基于超声衰减系数的微波热疗无损测温[J]. 北京生物医学工程, 2014, 33 (6): 620- 626
SHENG Lei, WU Wei-wei, ZHOU Zhu-huang Noninvasive temperature estimation of microwave hyperthermia based on ultrasound attenuation coefficients[J]. Beijing Biomedical Engineering, 2014, 33 (6): 620- 626
doi: 10.3969/j.issn.1002-3208.2014.06.12
[1] 张土乔 王鸿翔 郭帅. 给水管网水质模型管壁余氯衰减系数校正[J]. J4, 2008, 42(11): 1977-1982.