Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (5): 858-869    DOI: 10.3785/j.issn.1008-973X.2020.05.003
土木工程、交通工程     
预应力路堤附加围压场与围压增强效应
冷伍明1(),张期树1,徐方1,*(),冷慧康2,聂如松1,杨秀航1
1. 中南大学 土木工程学院,湖南 长沙 410075
2. 西南交通大学 土木工程学院,四川 成都 610031
Additional confining pressure field and enhancement effect of prestressed embankment
Wu-ming LENG1(),Qi-shu ZHANG1,Fang XU1,*(),Hui-kang LENG2,Ru-song NIE1,Xiu-hang YANG1
1. School of Civil Engineering, Central South University, Changsha 410075, China
2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
 全文: PDF(2665 KB)   HTML
摘要:

利用ABAQUS建立预应力路堤(PE)三维有限元模型,以侧压板(LPP)宽度1.2 m,边坡坡率1∶1为例,分析其内部附加围压场的分布特征. 结果表明:随距路堤坡面水平向深度增加,板体覆盖侧附加围压由浅层 “腹鼓形”差异分布逐渐过渡至深部的较均匀分布;板体3个外延区的附加围压均随坡面水平向内深度先增后减,以不同峰值围压扩散角将预应力扩散至路堤受荷核心区,且峰值扩散角依次为:板外上侧<板外左、右两侧<板外下侧. 基于强度折减法,分析预应力路堤整体稳定性能,并探寻板间距的优化设计方法和思路. 开展典型路堤填料的系列静动三轴试验,论证预应力加固结构能有效提高填料的静动力抗载和抗变形性能,并建立填料临界动应力与围压间的经验式,可以为补强铁路路堤土围压提供参考.

关键词: 预应力路堤附加围压场峰值围压扩散角稳定性板间距静动三轴试验临界动应力    
Abstract:

ABAQUS code was used to establish a finite element model of prestressed embankment (PE) and the distribution characteristics of the additional confining pressure field in a PE with a lateral pressure plate (LPP) width of 1.2 m and a slope ratio of 1 : 1 were analyzed. Results indicate that with the increase of the horizontal depth from the embankment slope surface, the additional confining pressure field under the coverage region of the LPP gradually varies from an “abdominal drum shape” distribution in shallow layers to a relatively uniform distribution in deeper layers. The additional confining pressure in three external regions of the LPP initially increases to a peak value and subsequently decreases with increasing horizontal depth, and the prestress propagates to the core zones mainly bearing the loading with different peak stress diffusing angles. The peak stress diffusing angle in the region beyond the left and right sides of the LPD is greater than that in the region beyond the upper side, but less than that in the region beyond the lower side. The overall stability of a PE was analyzed based on the strength reduction method, and a design method/idea with corresponding implementing procedures was proposed for optimizing the LPP spacing. A series of large-scale static and dynamic triaxial tests on a typical railway embankment filling were performed, substantiating that PE could effectively improve the ability of the embankment soil to resist deformation and static and dynamic loads. An empirical formula correlating the critical dynamic stress with the confining pressure was established, which provides a reference for determining the required confining pressure increment for railway embankments.

Key words: prestressed embankment    additional confining pressure field    peak confining pressure diffusing angle    stability    plates spacing    static and dynamic triaxial test    critical dynamic stress
收稿日期: 2019-04-12 出版日期: 2020-05-05
CLC:  TU 111  
基金资助: 国家自然科学基金资助项目(51709284,51978672,51678572);中南大学研究生自主探索创新资助项目(2019zzts283,2019zzts613)
通讯作者: 徐方     E-mail: wmleng@csu.edu.cn;fangxu@csu.edu.cn
作者简介: 冷伍明(1964—),男,教授,从事铁路路基整治技术研究. orcid.org/0000-0003-2668-3463. E-mail: wmleng@csu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
冷伍明
张期树
徐方
冷慧康
聂如松
杨秀航

引用本文:

冷伍明,张期树,徐方,冷慧康,聂如松,杨秀航. 预应力路堤附加围压场与围压增强效应[J]. 浙江大学学报(工学版), 2020, 54(5): 858-869.

Wu-ming LENG,Qi-shu ZHANG,Fang XU,Hui-kang LENG,Ru-song NIE,Xiu-hang YANG. Additional confining pressure field and enhancement effect of prestressed embankment. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 858-869.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.05.003        http://www.zjujournals.com/eng/CN/Y2020/V54/I5/858

图 1  预应力路堤加固组件
图 2  单块侧压板预应力路堤网格图
图 3  附加围压计算分区图
图 4  覆盖侧表面计算点编号
图 5  板体覆盖侧水平向附加应力等值线云图
图 6  3个外延区内附加围压系数分布曲线
图 7  3个外延区峰值围压线性扩散特征
区域 θ/(o) hp0/m
1 17.9 0.126
2 55.0 0.336
3 59.8 0.725
表 1  峰值扩散表征参数
图 8  不同外延区域附加围压扩散示意图
图 9  典型计算点数值解与理论解对比图
类型 Fos 类型 Fos
普通路堤 1.25 下排60 kPa 1.60
无预应力 1.44 双排60 kPa 1.72
上排60 kPa 1.54 双排100 kPa 1.90
表 2  不同加固方式下路堤安全系数
图 10  不同路堤加固工况
图 11  路堤破坏模式对比
图 12  预应力路堤加固作用
图 13  侧压板布置间距参数
图 14  附加围压系数与侧压板间距参数关系
图 15  侧压板间距参数关系
图 16  侧压板净间距1.2 m下薄弱区附加围压
图 17  试验土颗分曲线
试验条件 c /kPa φ /(°)
K=0.95,w=9.3% 45 31
K=0.95,w=6.0% 50 32
K=0.97,w=6.0% 58 33
表 3  不同试验条件下土体静剪切强度特性
图 18  动三轴试验加载方案
试验编号 w/% σ3/kPa σd/kPa
1 9.3 15 50
2 9.3 15 100
3 9.3 15 125
4 9.3 15 150
5 9.3 15 200
6 9.3 15 250
7 9.3 30 50
8 9.3 30 100
9 9.3 30 125
10 9.3 30 150
11 9.3 30 200
12 9.3 30 250
13 9.3 60 50
14 9.3 60 100
15 9.3 60 125
16 9.3 60 150
17 9.3 60 200
18 9.3 60 250
表 4  动三轴试验方案
图 19  不同围压下偏应力-轴向应变关系曲线
图 20  增加围压对承载力或竖向破坏应力的影响
模式 试样累积变形描述
稳定型 加载50 000振次后,εa缓慢增加且不会超过5%
临界型 加载20 000振次后,εa迅速或缓慢增加,并达到15%
破坏型 加载振次未达20 000次,εa迅速增加并达到15%
表 5  试样累积塑性变形模式分类法
图 21  不同围压下的轴向累积应变与循环振次关系曲线
图 22  不同围压下的动强度
图 23  试样轴向累积塑性变形与循环振次的关系曲线
图 24  循环应力比、临界动应力与围压关系
1 杜振军 大准铁路路基病害调查及沉降变形分析[J]. 铁道建筑, 2017, 57 (9): 121- 123
DU Zhen-jun Investigation of subgrade defects in Datong-Zhunger railway and analysis of subsidence deformation[J]. Railway Engineering, 2017, 57 (9): 121- 123
2 王成亮, 白明洲, 杜衍庆, 等 重载铁路既有线路基病害探地雷达无损检测方法[J]. 北京交通大学学报, 2013, 37 (4): 35- 39
WANG Cheng-liang, BAI Ming-zhou, DU Yan-qing, et al Ground penetrating radar nondestructive testing ethod applied in railway subgrade of existing heavy haul railway[J]. Journal of Beijing Jiaotong University, 2013, 37 (4): 35- 39
doi: 10.3969/j.issn.1673-0291.2013.04.007
3 中国铁路总公司. 2013年铁路路基检测年度报告[R]. 北京: 中国铁道出版社, 2013.
4 冷伍明, 聂如松, 杨奇, 等 新型预应力路基结构与性能初探[J]. 铁道学报, 2016, 38 (11): 111- 119
LENG Wu-ming, NIE Ru-song, YANG Qi, et al A New type of prestressed embankment structure and its properties[J]. Journal of the China Railway Society, 2016, 38 (11): 111- 119
doi: 10.3969/j.issn.1001-8360.2016.11.016
5 蒋红光, 边学成, 徐翔, 等 列车移动荷载下高速铁路板式轨道路基动力性态的全比尺物理模型试验[J]. 岩土工程学报, 2014, 36 (2): 354- 362
JIANG Hong-guang, BIAN Xue-cheng, XU Xiang, et al Full-scale model tests on dynamic performances of ballastless high-speed railways under moving train loads[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (2): 354- 362
doi: 10.11779/CJGE201402013
6 狄宏规, 冷伍明, 薛继连, 等 朔黄铁路重载扩能的路基强度评估[J]. 铁道学报, 2014, 36 (8): 84- 90
DI Hong-gui, LENG Wu-ming, XUE Ji-lian, et al Assessment of subgrade strength for transport capacity enlargement of Shuo-Huang heavy-haul railway[J]. Journal of the China Railway Society, 2014, 36 (8): 84- 90
doi: 10.3969/j.issn.1001-8360.2014.08.19
7 边学成, 程翀, 王复明, 等 高速铁路路基沉降高聚物注浆修复后动力性能及长期耐久性的试验研究[J]. 岩土工程学报, 2014, 36 (3): 562- 568
BIAN Xue-cheng, CHENG Chong, WANG Fu-ming, et al Experimental study on dynamic performance and long-term durability of high-speed railway subgrade rehabilitated by polymer injection technology[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (3): 562- 568
doi: 10.11779/CJGE201403020
8 狄宏规, 冷伍明, 周顺华, 等 朔黄重载铁路路基斜向高压旋喷桩加固效果[J]. 同济大学学报: 自然科学版, 2013, 41 (12): 1818- 1823
DI Hong-gui, LENG Wu-ming, ZHOU Shun-hua, et al Reinforcement effect of inclined high-pressure jet grouting piles for Shuo-Huang heavy haul railway[J]. Journal of Tongji University: Natural Science, 2013, 41 (12): 1818- 1823
9 刘晶磊, 宋绪国, 董捷, 等 水泥土排桩加固重载铁路路基的数值分析[J]. 铁道工程学报, 2014, 31 (6): 18- 23
LIU Jing-lei, SONG Xu-guo, DONG Jie, et al Numerical analysis of reinforcing heavy haul railway subgrade by cement soil piles[J]. Journal of Railway Engineering Society, 2014, 31 (6): 18- 23
doi: 10.3969/j.issn.1006-2106.2014.06.005
10 ESMAEILI M, NADERI B, NEYESTANAKI H K, et al Investigating the effect of geogrid on stabilization of high railway embankments[J]. Soils and Foundations, 2018, 58 (2): 319- 332
doi: 10.1016/j.sandf.2018.02.005
11 邓鹏, 郭林, 蔡袁强, 等 考虑填料-土工格室相互作用的加筋路堤力学响应研究[J]. 岩石力学与工程学报, 2015, 34 (3): 621- 630
DENG Peng, GUO Lin, CAI Yuan-qiang, et al Mechanical behavior of reinforced embankment considering interaction between gravel and geocell[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (3): 621- 630
12 FUGGINI C, ZANGANI D, WOSNIOK A, et al Innovative approach in the use of geotextiles for failures prevention in railway embankments[J]. Transportation Research Procedia, 2016, 14: 1875- 1883
doi: 10.1016/j.trpro.2016.05.154
13 律文田, 王永和 秦沈客运专线路桥过渡段路基动应力测试分析[J]. 岩石力学与工程学报, 2004, 23 (3): 500- 504
LV Wen-tian, WANG Yong-he Dynamic stress analysis of subgrade-bridge transition section of Qin-Shen railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23 (3): 500- 504
doi: 10.3321/j.issn:1000-6915.2004.03.026
14 冷伍明, 梅慧浩, 聂如松, 等 重载铁路路基足尺模型试验研究[J]. 振动与冲击, 2018, 23 (4): 1- 6
LENG Wu-ming, MEI Hui-hao, NIE Ru-song, et al Full-scale model test of heavy haul railway subgrade[J]. Journal of Vibration and Shock, 2018, 23 (4): 1- 6
15 陈仁朋, 江朋, 叶肖伟, 等 高铁单线路基循环累积变形分析方法及其可靠度分析[J]. 岩石力学与工程学报, 2016, 35 (1): 141- 149
CHEN Ren-peng, JIANG Peng, YE Xiao-wei, et al Analysis approach and reliability analysis of cumulative cyclic deformation of subgrade of single high-speed railway line[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (1): 141- 149
16 国家铁路局. 铁路路基设计规范: TB 10001-2016 [S]. 北京: 中国铁道出版社, 2016.
17 DEUTSCHE BAHN AG. Erdauwerke planen, bauen und instand halten: Ril 836 [S]. Berlin: Deutsches Institut für Normung e. V, 2008.
18 XU F, YANG Q, LIU W J, et al Dynamic stress of subgrade bed layers subjected to train vehicles with large axle loads[J]. Shock and Vibration, 2018, 1- 12
19 国家铁路局. 重载铁路设计规范: TB 10625-2017 [S]. 北京: 中国铁道出版社, 2017.
20 张鲁渝, 郑颖人, 赵尚毅, 等 有限元强度折减系数法计算土坡稳定安全系数的精度研究[J]. 水利学报, 2003, 34 (1): 21- 27
ZHANG Lu-yu, ZHENG Ying-ren, ZHAO Shang-yi, et al The feasibility study of strength-reduction method with FEM for calculating safety factors of soil slope stability[J]. Journal of Hydraulic Engineering, 2003, 34 (1): 21- 27
doi: 10.3321/j.issn:0559-9350.2003.01.005
21 徐芝纶. 弹性力学[M]. 北京: 高等教育出版社, 1990.
22 李文坚. 水平预应力加固铁路路堤方法及其初步分析[D]. 长沙: 中南大学, 2015.
LI Wen-jian. Horizontal pre-stressed method on railway embankment reinforcement and its preliminary analysis [D]. Changsha: Central South University, 2015.
23 周平, 王志杰, 张家瑞, 等 高速铁路新型路基材料的动响应减振研究[J]. 振动与冲击, 2017, 36 (13): 230- 237
ZHOU Ping, WANG Zhi-jie, ZHANG Jia-rui, et al Vibration reduction effects of new-type roadbed material of high-speed railway[J]. Journal of Vibration and Shock, 2017, 36 (13): 230- 237
24 隋孝民, 陆征然 列车荷载在高速铁路路基中传递规律研究[J]. 铁道工程学报, 2012, (2): 25- 31
SUI Xiao-min, LU Zheng-ran Study on transmission laws of train load in subgrade of high-speed railway[J]. Journal of Railway Engineering Society, 2012, (2): 25- 31
doi: 10.3969/j.issn.1006-2106.2012.02.006
25 ANDERSEN K H, LAURITZSEN R Bearing capacity for foundations with cyclic loads[J]. Journal of Geotechnical Engineering, 1988, 104 (5): 540- 555
[1] 王慧芳,张晨宇. 采用极限梯度提升算法的电力系统电压稳定裕度预测[J]. 浙江大学学报(工学版), 2020, 54(3): 606-613.
[2] 吕良,陈虹,宫洵,赵海光,胡云峰. 汽油发动机冷却系统建模与水温控制[J]. 浙江大学学报(工学版), 2019, 53(6): 1119-1129.
[3] 王郭俊,许洪国,刘宏飞. 双半挂汽车列车操纵稳定性分析[J]. 浙江大学学报(工学版), 2019, 53(2): 299-306.
[4] 袁海辉,葛一敏,甘春标. 不确定性扰动下双足机器人动态步行的自适应鲁棒控制[J]. 浙江大学学报(工学版), 2019, 53(11): 2049-2057.
[5] 夏超英,吴刚,于佳丽. 基于一致渐近稳定观测器的模块化多电平变流器控制系统设计[J]. 浙江大学学报(工学版), 2019, 53(11): 2238-2247.
[6] 朱谢联,董石麟. 六杆四面体双曲面冷却塔网壳的构形、静力与稳定性能[J]. 浙江大学学报(工学版), 2019, 53(10): 1907-1915.
[7] 支旭东,郭梦慧,王臣,武启剑. 泡沫混凝土填充圆钢管的轴压力学性能[J]. 浙江大学学报(工学版), 2019, 53(10): 1927-1935.
[8] 刘蕴, 董冠华, 殷国富. 非接触密封失稳振动分析与结构优化[J]. 浙江大学学报(工学版), 2018, 52(7): 1390-1397.
[9] 崔恒斌, 周瑾, 董继勇, 金超武. 磁悬浮旋转机械振动稳定性实例研究[J]. 浙江大学学报(工学版), 2018, 52(4): 635-640.
[10] 刘士兴, 范对鹏, 程龙, 王世超, 丁力, 易茂祥. 静态随机存储器双向互锁存储单元的抗老化设计[J]. 浙江大学学报(工学版), 2017, 51(7): 1453-1461.
[11] 王海艳, 程严. 基于离散系数的双向服务选择方法[J]. 浙江大学学报(工学版), 2017, 51(6): 1197-1204.
[12] 唐晓武, 李姣阳, 邹金杰, 赵宇, 甘鹏路, 刘维, 潘乘浪. 浅埋盾构隧道开挖面失稳发展过程模型试验[J]. 浙江大学学报(工学版), 2017, 51(5): 863-869.
[13] 郝子轶, 项晓燕, 陈晨, 孟建熠. 轻量级现场纠正的错误消除寄存器设计[J]. 浙江大学学报(工学版), 2017, 51(3): 605-611.
[14] 杨春宁, 方家为, 李春, 葛晖. 基于稳定性判据的高超声速复合控制方法[J]. 浙江大学学报(工学版), 2017, 51(2): 422-428.
[15] 赵亮, 吕亚飞, 贺治国, 林颖典, 胡鹏, 林挺. 分层水体和障碍物对斜坡异重流运动特性的影响[J]. 浙江大学学报(工学版), 2017, 51(12): 2466-2473.