Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (12): 2466-2473    DOI: 10.3785/j.issn.1008-973X.2017.12.021
水利工程     
分层水体和障碍物对斜坡异重流运动特性的影响
赵亮1, 吕亚飞1, 贺治国1,2, 林颖典1, 胡鹏1,2, 林挺1,3
1. 浙江大学 海洋学院, 浙江 舟山 316021;
2. 国家海洋局第二海洋研究所, 浙江 杭州 310012;
3. 宁波大榭开发区交通局, 浙江 宁波 315812
Influence of stratified water and obstacles on downslope gravity currents' movement characteristics
ZHAO Liang1, LV Ya-fei1, HE Zhi-guo1,2, LIN Ying-dian1, HU Peng1,2, LIN Ting1,3
1. Ocean College, Zhejiang University, Zhoushan 316021, China;
2. Second Institute of Oceanography, SOA, Hangzhou 310012, China;
3. Transportation Bureau of Ningbo Daxie, Ningbo 315812, China
 全文: PDF(4278 KB)   HTML
摘要:

开展一系列开闸式异重流沿斜坡运动的水槽实验.利用"双缸法"生成线性分层水体,通过高速摄像机记录异重流的发展过程,利用激光粒子图像测速技术(PIV)获取局部流场结构.结果表明:在有障碍物的情况下,异重流的头部速度变化过程为"加速-减速-二次加速-减速";在分层水体中,二次加速达到的最大速度比在均匀水体中约小50%.异重流在越过障碍物的过程中,会在障碍物的上前方出现非常明显的负向漩涡,从而加剧异重流与环境水体之间的掺混与交换,掺混强度随着障碍物高度的增大而增加.水体分层和障碍物的存在均会抑制异重流正向涡度场的发展,其中水体分层的抑制作用更强.

Abstract:

A series of lock-exchange experiments of gravity currents down a slope were presented. The ambient linearly water was generated by a two-tank method. The propagation of the gravity currents was recorded using a high-speed camera and a particle image velocimetry (PIV) equipment was applied to obtain the microstructures of flow field. The experimental results show that, the head velocity change process of gravity currents with obstacles was "acceleration, deceleration, second acceleration and deceleration". For gravity currents in linearly stratified environments, the maximum head velocity during the second acceleration phase was about 50% smaller than that in unstratified environments. A negative eddy above the obstacle appeared when the gravity currents passed over the obstacle, which greatly enhanced the entrainment and mixing between the gravity current and the ambient water. The strength of the entrainment effect became more evident with increasing of the obstacle's height. Both of the stratified water and the obstacle can hold-up the develop of the gravity currents' positive vorticities, while, the stratification played a more important role in this inhibition.

收稿日期: 2017-03-17 出版日期: 2017-11-22
CLC:  TV148  
基金资助:

国家自然科学基金资助项目(11672267);浙江省杰出青年基金资助项目(LR16E090001);深圳市科技研发资金基础研究资助项目(JCYJ20160425164642646).

通讯作者: 贺治国,男,教授.orcid.org/0000-0002-0612-9062.     E-mail: hezhiguo@zju.edu.cn
作者简介: 赵亮(1993-),男,博士生,从事环境流体力学研究.orcid.org/0000-0002-5696-7398.E-mail:liangz@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

赵亮, 吕亚飞, 贺治国, 林颖典, 胡鹏, 林挺. 分层水体和障碍物对斜坡异重流运动特性的影响[J]. 浙江大学学报(工学版), 2017, 51(12): 2466-2473.

ZHAO Liang, LV Ya-fei, HE Zhi-guo, LIN Ying-dian, HU Peng, LIN Ting. Influence of stratified water and obstacles on downslope gravity currents' movement characteristics. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(12): 2466-2473.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.12.021        http://www.zjujournals.com/eng/CN/Y2017/V51/I12/2466

[1] 贺治国,林挺,赵亮,等.异重流在层结与非层结水体中沿斜坡运动的实验研究[J].中国科学:技术科学,2016,46(6):570-578. HE Zhi-guo, LIN Ting, ZHAO Liang, et al. Experiments on gravity currents down a ramp in unstratified and linearly stratified salt water environments[J].Scientia Sinica Technologica, 2016, 46(6):570-578.
[2] 张小峰,姚志坚,陆俊卿.分层水库异重流试验[J].武汉大学学报:工学版,2011,44(4):409-413. ZHANG Xiao-feng, YAO Zhi-jian, LU Jun-qing. Experiments of density currents in stratified reservoir[J]. Engineering Journal of Wuhan University, 2011,44(4):409-413.
[3] ZHANG X, SHI R, LU J, et al. Effect of thermal stratification on interflow travel time in stratified reservoir[J]. Journal of Zhejiang University-SCIENCE A:Applied Physics and Engineering, 2015, 16(4):265-278.
[4] 张瑞瑾.河流泥沙动力学[M].第二版.北京:中国水利水电出版社,2008:211.
[5] MEIBURG E, RADHAKRISHNAN S, NASR-AZADANI M. Modeling gravity and turbidity currents:computational approaches and challenges[J]. Applied Mechanics Reviews, 2015, 67(4):40802.
[6] TOKYAY T E, GARCÍA M H. Effect of initial excess density and discharge on constant flux gravity currents propagating on a slope[J]. Environmental Fluid Mechanics, 2014, 14(2):409-429.
[7] SIMPSON J E. Gravity currents in the laboratory, atmosphere, and ocean[J]. Annual Review of Fluid Mechanics, 1982, 14(1):213-234.
[8] MEIBURG E, KNELLER B. Turbidity currents and their deposits[J]. Annual Review of Fluid Mechanics, 2010, 42(1):135-156.
[9] HO H, LIN Y. Gravity currents over a rigid and emergent vegetated slope[J]. Advances in Water Resources, 2015, 76:72-80.
[10] BENJAMIN T B. Gravity currents and related phenomena[J]. Journal of Fluid Mechanics, 1968,31(2):209-248.
[11] 范家骅.异重流运动的实验研究[J].水利学报,1959,5(05):30-48. FAN Jia-hua. Experimental studies on density currents[J]. Journal of Hydraulic Engineering, 1959, 5(5):30-48.
[12] 范家骅.异重流与泥沙工程实验与设计[M].北京:中国水利水电出版社, 2011:13-15.
[13] DAI A. Experiments on gravity currents propagating on different bottom slopes[J]. Journal of Fluid Mechanics, 2013, 731:117-141.
[14] 任实,张小峰,陆俊卿.温度分层水库中间层流运动影响因素分析[J].哈尔滨工程大学学报,2015(5):648-652. REN Shi, ZHANG Xiao-feng, LU Jun-qing. Influencing factors of the inflow in temperature-stratified reservoirs[J]. Journal of Harbin Engineering University, 2015(5):648-652.
[15] 张巍,赵亮,贺治国,等.线性层结盐水中的羽流运动特性[J].水科学进展,2016,27(4):1-7. ZHANG Wei, ZHAO Liang, HE Zhi-guo, et al. Characteristics of plumes in linearly stratified salt-water[J]. Advances in Water Science, 2016, 27(4):1-7.
[16] BAINES P G. Mixing in flows down gentle slopes into stratified environments[J]. Journal of Fluid Mechanics, 2001, 443:237-270.
[17] HE Z, ZHAO L, LIN T, et al. Hydrodynamics of gravity currents down a ramp in linearly stratified environments[J]. Journal of Hydraulic Engineering, 2017, 143(3):4016085.
[18] BEGHIN P, HOPFINGER E J, BRITTER R E. Gravitational convection from instantaneous sources on inclined boundaries[J]. Journal of Fluid Mechanics, 1981, 107:407-422.
[19] 林挺.层结水体中异重流沿坡运动的试验研究[D].杭州:浙江大学, 2016. LIN Ting. Experimental study on gravity currents down a ramp in linearly stratified environments[D]. Hangzhou:Zhejiang University, 2016.
[20] KUBO Y. Experimental and numerical study of topographic effects on deposition from two-dimensional, particle-driven density currents[J]. Sedimentary Geology, 2004, 164(3-4):311-326.
[21] TOKYAY T, CONSTANTINESCU G. The effects of a submerged non-erodible triangular obstacle on bottom propagating gravity currents[J]. Physics of Fluids, 2015, 27(5):56601.
[22] NASR-AZADANI M M, MEIBURG E, KNELLER B. Mixing dynamics of turbidity currents interacting with complex seafloor topography[J]. Environmental Fluid Mechanics, 2016:1-23.
[23] CONSTANTINESCU G. Les of lock-exchange compositional gravity currents:a brief review of some recent results[J]. Environmental Fluid Mechanics, 2014,14(2):295-317.
[24] THIELICKE W, STAMHUIS E. Pivlab-towards user-friendly, affordable and accurate digital particle image velocimetry in Matlab[J]. Journal of Open Research Software, 2014, 2(1):e30.
[25] SNOW K, SUTHERLAND B R. Particle-laden flow down a slope in uniform stratification[J]. Journal of Fluid Mechanics, 2014, 755:251-273.
[26] IEONG K K, MOK K M, YEH H. Fluctuation of the front propagation speed of developed gravity current[J]. Journal of Hydrodynamics, Ser. B, 2006,18(Suppl.):351-355.
[27] WELLS M, NADARAJAH P. The intrusion depth of density currents flowing into stratified water bodies[J]. Journal of Physical Oceanography, 2009, 39(8):1935-1947.

[1] 李莉, 操进浪, 贺治国, 姚炎明. 杭州湾-长江口海域岸线变化对杭州湾潮汐特征的影响[J]. 浙江大学学报(工学版), 2018, 52(8): 1605-1615.