Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (11): 2178-2185    DOI: 10.3785/j.issn.1008-973X.2021.11.019
土木与建筑工程     
3D打印混凝土层条间界面抗拉性能与本构模型
张静(),邹道勤,王海龙*(),孙晓燕
浙江大学 建筑工程学院,浙江 杭州 310058
Bond tensile performance and constitutive models of interfaces between vertical and horizontal filaments of 3D printed concrete
Jing ZHANG(),Dao-qin ZOU,Hai-long WANG*(),Xiao-yan SUN
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1834 KB)   HTML
摘要:

通过直接拉伸试验,研究3D打印混凝土层、条间界面的抗拉强度与整体拉伸-变形曲线. 通过XCT扫描,根据孔隙率在基体与界面处的分布规律,确定层、条间界面的厚度和平均孔隙率. 根据打印混凝土基体与层、条界面的变形关系得到界面的拉伸-变形曲线. 基于混凝土的拉伸塑性损伤本构理论,建立3D打印混凝土层、条间界面的拉伸本构模型. 研究结果显示:打印混凝土层、条间的平均抗拉强度为1.636、1.514 MPa,分别占基体抗拉强度的85.8%、79.4%;层、条间界面抗拉强度和极限变形与界面处孔隙率存在明显的线性关系;层间界面厚度约为0.81 mm,条间界面厚度约为2.12 mm;所建立的本构模型与试验结果较吻合,能够准确反映拉伸荷载作用下界面的力学响应,可以为3D打印混凝土数值模拟提供可靠依据.

关键词: 3D打印混凝土界面拉伸性能应力-应变曲线界面厚度拉伸本构模型    
Abstract:

Directly tensile tests were conducted, in order to investigate the tensile properties of the interfaces between vertical and horizontal filaments of 3D printed concrete and the tension-deformation curves. The distribution of porosity in the matrix and the interfaces were obtained and the thicknesses as well as average porosity of the interfaces were determined, using XCT scanning technique. The tensile-deformation curves of the interfaces were obtained, according to the deformation relationship between the interfaces and the matrix. The tensile constitutive models of interfaces were established based on the existing damage constitutive theory. Results showed that the average tensile strengths between vertical and horizontal filaments were 1.636 MPa and 1.514 MPa, accounting for 85.8% and 79.4% of the matrix strength, respectively. An elastic model can be used to describe the relationships of strength, ultimate deformation and porosity of interfaces. The thickness of the interface between vertical filaments was about 0.81 mm, while the thickness of the interface between horizontal filaments was about 2.12 mm. The calculated results based on the established constitutive model agreed well with the test results, which can accurately reflect the mechanical response of 3D printed concrete under tensile stress and provide some scientific support to the numerical simulation of 3D printed concrete.

Key words: 3D printed concrete    interface tensile performance    tension-deformation curve    interface thickness    tensile constitutive model
收稿日期: 2020-12-21 出版日期: 2021-11-05
CLC:  TU 528  
基金资助: 国家自然科学基金资助项目(52079123);浙江省重点研发计划资助项目(2021C01022)
通讯作者: 王海龙     E-mail: 1092384700@qq.com;hlwang@zju.edu.cn
作者简介: 张静(1996—),女,硕士,从事3D打印混凝土研究. orcid.org/0000-0002-0658-126X. E-mail: 1092384700@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张静
邹道勤
王海龙
孙晓燕

引用本文:

张静,邹道勤,王海龙,孙晓燕. 3D打印混凝土层条间界面抗拉性能与本构模型[J]. 浙江大学学报(工学版), 2021, 55(11): 2178-2185.

Jing ZHANG,Dao-qin ZOU,Hai-long WANG,Xiao-yan SUN. Bond tensile performance and constitutive models of interfaces between vertical and horizontal filaments of 3D printed concrete. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2178-2185.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.11.019        https://www.zjujournals.com/eng/CN/Y2021/V55/I11/2178

组分 wB 组分 wB
CaO 40.68 MgO 1.45
SiO2 9.53 SO3 12.42
Al2O3 32.75 Na2O 0.08
Fe2O3 1.33 Loss 0.11
表 1  水泥化学成分
l/mm D/μm ft/MPa δ/% E/GPa ρ/(g·cm?3)
12 31 1600 7 43 1.3
表 2  PVA 纤维主要物理力学性能
图 1  抗拉试件尺寸及层条间界面说明
图 2  抗拉试验装置
图 3  界面抗拉性能测试用拉伸试件
图 4  CT扫描试件示意图
图 5  拉伸试验中试件的破坏模式
图 6  基体材料及层条间界面抗拉强度
图 7  直拉试验界面破坏形态
图 8  打印试件CT扫描3D重建模型
图 9  基体部分孔隙率研究区域(左视图)
图 10  基体部分孔隙率分布正态拟合结果
图 11  孔隙率研究区域
图 12  条间孔隙率变化曲线
图 13  层间孔隙率变化曲线
图 14  孔隙率和极限拉伸强度线性关系拟合曲线
图 15  孔隙率和极限拉伸应变线性关系拟合曲线
图 16  界面区材料的拉伸-位移曲线
图 17  层条间界面与基体材料的拉伸-变形曲线
图 18  基体材料的受拉应力-应变关系曲线
图 19  界面受拉应力-应变曲线计算值与试验值对比
1 LEE J Y, AN J, CHUA C K Fundamentals and applications of 3D printing for novel materials[J]. Applied Materials Today, 2017, 7: 120- 133
doi: 10.1016/j.apmt.2017.02.004
2 HAMIDI F, ASLANI F Additive manufacturing of cementitious composites: materials, methods, potentials, and challenges[J]. Construction and Building Materials, 2019, 218: 582- 609
doi: 10.1016/j.conbuildmat.2019.05.140
3 PAOLINI A, KOLLMANNSBERGER S, RANK E Additive manufacturing in construction: a review on processes, applications, and digital planning methods[J]. Additive Manufacturing, 2019, 30: 100894
doi: 10.1016/j.addma.2019.100894
4 ZHANG J, WANG J, DONG S, et al A review of the current progress and application of 3D printed concrete[J]. Composites Part A: Applied Science and Manufacturing, 2019, 125: 105533
doi: 10.1016/j.compositesa.2019.105533
5 SIDDIKA A, MAMUM M A, FERDOUS W, et al 3D-printed concrete: applications, performance, and challenges[J]. Journal of Sustainable Cement-Based Materials, 2019, 9 (3): 127- 164
6 LU B, WENG Y, LI M, et al A systematical review of 3D printable cementitious materials[J]. Construction and Building Materials, 2019, 207: 477- 490
doi: 10.1016/j.conbuildmat.2019.02.144
7 NGO T D, KASHANI A, IMBALZANOL G, et al Additive manufacturing (3D printing): a review of materials, methods, applications and challenges[J]. Composites Part B: Engineering, 2018, 143: 172- 196
doi: 10.1016/j.compositesb.2018.02.012
8 RASHID A A, KHAN S A, AL-GHAMDI S G, et al Additive manufacturing: technology, applications, markets, and opportunities for the built environment[J]. Automation in Construction, 2020, 118: 103268
doi: 10.1016/j.autcon.2020.103268
9 CRAVEIRO F, DUARTE J P, BARTOLO H, et al Additive manufacturing as an enabling technology for digital construction: a perspective on Construction 4.0[J]. Automation in Construction, 2019, 103: 251- 267
doi: 10.1016/j.autcon.2019.03.011
10 KHAN M S, SANCHEZ F, ZHOU H 3-D printing of concrete: beyond horizons[J]. Cement and Concrete Research, 2020, 133: 106070
doi: 10.1016/j.cemconres.2020.106070
11 MECHTCHERINE V, BOS F P, PERROT A, et al Extrusion-based additive manufacturing with cement-based materials: production steps, processes, and their underlying physics: a review[J]. Cement and Concrete Research, 2020, 132: 106037
doi: 10.1016/j.cemconres.2020.106037
12 ROUSSEL N, SPANGENBERG J, WALLEVIK J, et al Numerical simulations of concrete processing: from standard formative casting to additive manufacturing[J]. Cement and Concrete Research, 2020, 135: 106075
doi: 10.1016/j.cemconres.2020.106075
13 MARCHMENT T, SANJAYAN J G, NEMATOLLAHI B, et al. Interlayer strength of 3D printed concrete: influencing factors and method of enhancing[M]. 3D Concrete Printing Technology, 2019: 241-264.
14 BONG S H, NEMATOLLAHI B, NAZARI A, et al Method of optimisation for ambient temperature cured sustainable geopolymers for 3D printing construction applications[J]. Materials (Basel), 2019, 12 (6): 902
doi: 10.3390/ma12060902
15 NEMATOLLAHI B, XIA M, VIJAY P, et al. Properties of extrusion-based 3D printable geopolymers for digital construction applications[M]. 3D Concrete Printing Technology. Oxford: Butterworth-Heinemann Elsevier Ltd., 2019: 371-388.
16 MARCHMENT T, SANJAYAN J, XIA M Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification[J]. Materials and Design, 2019, 169: 107684
doi: 10.1016/j.matdes.2019.107684
17 PANDA B, PAUL S C, MOHAMED N A N, et al Measurement of tensile bond strength of 3D printed geopolymer mortar[J]. Measurement, 2018, 113: 108- 116
doi: 10.1016/j.measurement.2017.08.051
18 TAY Y W D, TING G H A, QIAN Y, et al Time gap effect on bond strength of 3D-printed concrete[J]. Virtual and Physical Prototyping, 2018, 14 (1): 104- 113
19 刘致远, 王振地, 王玲, 等 3D打印水泥净浆层间拉伸强度及层间剪切强度[J]. 硅酸盐学报, 2019, 47 (5): 648- 652
LIU Zhi-yuan, WANG Zhen-di, WANG Ling, et al Interlayer bond strength of 3D printing cement paste by cross-bonded method[J]. Journal of the Chinese Ceramic Society, 2019, 47 (5): 648- 652
20 余红芸. 钢纤维—水泥基界面过渡区纳米力学性能研究[D]. 武汉: 武汉大学, 2017.
YU Hong-yun. Nano-indentation character of interfacial transition zone between steel fiber and cement paste[D]. Wuhan: Wuhan University, 2017.
21 张鸿儒. 基于界面参数的再生骨料混凝土性能劣化机理及工程应用[D]. 杭州: 浙江大学, 2016.
ZHANG Hong-ru. Deterioration mechanical of recycled aggregate concrete (RAC) based on interface parameters and the application of RAC [D]. Hangzhou: Zhejiang University, 2016.
22 董艳颖. 水泥基复合材料界面区的力学性能试验研究[D]. 内蒙古: 内蒙古工业大学, 2016.
DONG Yan-ying. Experimental study on the mechanical properties of the interfacial zone of cement based composites [D]. Inner Mongolia: Inner Mongolia University of Technology, 2016.
23 CHEN X, WU S, ZHOU J Influence of porosity on compressive and tensile strength of cement mortar[J]. Construction and Building Materials, 2013, 40: 869- 874
doi: 10.1016/j.conbuildmat.2012.11.072
24 KUMAR R, BHATTACHARJEE B Porosity, pore size distribution and in situ strength of concrete[J]. Cement and Concrete Research, 2003, 33 (1): 155- 164
doi: 10.1016/S0008-8846(02)00942-0
25 LIAN C, ZHUGE Y, BEECHAM S The relationship between porosity and strength for porous concrete[J]. Construction and Building Materials, 2011, 25 (11): 4294- 4298
doi: 10.1016/j.conbuildmat.2011.05.005
26 邓朝莉, 李宗利 孔隙率对混凝土力学性能影响的试验研究[J]. 混凝土, 2016, (7): 41- 44
DENG Chao-li, LI Zong-li Experimental study on mechanical properties of concrete with porosity[J]. Concrete, 2016, (7): 41- 44
doi: 10.3969/j.issn.1002-3550.2016.07.011
27 杜修力, 金浏 考虑孔隙及微裂纹影响的混凝土宏观力学特性研究[J]. 工程力学, 2012, 29 (8): 101- 107
DU Xiu-li, JIN Liu Research on the influence of pores and micro-cracks on the macro-mechanical properties of concrete[J]. Engineering Mechanics, 2012, 29 (8): 101- 107
doi: 10.6052/j.issn.1000-4750.2010.10.0742
28 白晓玮. 混凝土损伤本构关系的研究与应用[D]. 郑州: 郑州大学, 2017.
BAI Xiao-wei. Study and application on the damage constitutive law for concrete[D]. Zhengzhou: Zhengzhou University, 2017.
[1] 郭林, 蔡袁强, 谷川, 王军. 循环荷载下软黏土回弹和累积变形特性[J]. J4, 2013, 47(12): 2111-2117.
[2] 陈驹 金伟良 杨立伟. 建筑用不锈钢的抗火性能[J]. J4, 2008, 42(11): 1983-1989.