土木与建筑工程 |
|
|
|
|
3D打印混凝土层条间界面抗拉性能与本构模型 |
张静( ),邹道勤,王海龙*( ),孙晓燕 |
浙江大学 建筑工程学院,浙江 杭州 310058 |
|
Bond tensile performance and constitutive models of interfaces between vertical and horizontal filaments of 3D printed concrete |
Jing ZHANG( ),Dao-qin ZOU,Hai-long WANG*( ),Xiao-yan SUN |
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China |
引用本文:
张静,邹道勤,王海龙,孙晓燕. 3D打印混凝土层条间界面抗拉性能与本构模型[J]. 浙江大学学报(工学版), 2021, 55(11): 2178-2185.
Jing ZHANG,Dao-qin ZOU,Hai-long WANG,Xiao-yan SUN. Bond tensile performance and constitutive models of interfaces between vertical and horizontal filaments of 3D printed concrete. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2178-2185.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.11.019
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I11/2178
|
1 |
LEE J Y, AN J, CHUA C K Fundamentals and applications of 3D printing for novel materials[J]. Applied Materials Today, 2017, 7: 120- 133
doi: 10.1016/j.apmt.2017.02.004
|
2 |
HAMIDI F, ASLANI F Additive manufacturing of cementitious composites: materials, methods, potentials, and challenges[J]. Construction and Building Materials, 2019, 218: 582- 609
doi: 10.1016/j.conbuildmat.2019.05.140
|
3 |
PAOLINI A, KOLLMANNSBERGER S, RANK E Additive manufacturing in construction: a review on processes, applications, and digital planning methods[J]. Additive Manufacturing, 2019, 30: 100894
doi: 10.1016/j.addma.2019.100894
|
4 |
ZHANG J, WANG J, DONG S, et al A review of the current progress and application of 3D printed concrete[J]. Composites Part A: Applied Science and Manufacturing, 2019, 125: 105533
doi: 10.1016/j.compositesa.2019.105533
|
5 |
SIDDIKA A, MAMUM M A, FERDOUS W, et al 3D-printed concrete: applications, performance, and challenges[J]. Journal of Sustainable Cement-Based Materials, 2019, 9 (3): 127- 164
|
6 |
LU B, WENG Y, LI M, et al A systematical review of 3D printable cementitious materials[J]. Construction and Building Materials, 2019, 207: 477- 490
doi: 10.1016/j.conbuildmat.2019.02.144
|
7 |
NGO T D, KASHANI A, IMBALZANOL G, et al Additive manufacturing (3D printing): a review of materials, methods, applications and challenges[J]. Composites Part B: Engineering, 2018, 143: 172- 196
doi: 10.1016/j.compositesb.2018.02.012
|
8 |
RASHID A A, KHAN S A, AL-GHAMDI S G, et al Additive manufacturing: technology, applications, markets, and opportunities for the built environment[J]. Automation in Construction, 2020, 118: 103268
doi: 10.1016/j.autcon.2020.103268
|
9 |
CRAVEIRO F, DUARTE J P, BARTOLO H, et al Additive manufacturing as an enabling technology for digital construction: a perspective on Construction 4.0[J]. Automation in Construction, 2019, 103: 251- 267
doi: 10.1016/j.autcon.2019.03.011
|
10 |
KHAN M S, SANCHEZ F, ZHOU H 3-D printing of concrete: beyond horizons[J]. Cement and Concrete Research, 2020, 133: 106070
doi: 10.1016/j.cemconres.2020.106070
|
11 |
MECHTCHERINE V, BOS F P, PERROT A, et al Extrusion-based additive manufacturing with cement-based materials: production steps, processes, and their underlying physics: a review[J]. Cement and Concrete Research, 2020, 132: 106037
doi: 10.1016/j.cemconres.2020.106037
|
12 |
ROUSSEL N, SPANGENBERG J, WALLEVIK J, et al Numerical simulations of concrete processing: from standard formative casting to additive manufacturing[J]. Cement and Concrete Research, 2020, 135: 106075
doi: 10.1016/j.cemconres.2020.106075
|
13 |
MARCHMENT T, SANJAYAN J G, NEMATOLLAHI B, et al. Interlayer strength of 3D printed concrete: influencing factors and method of enhancing[M]. 3D Concrete Printing Technology, 2019: 241-264.
|
14 |
BONG S H, NEMATOLLAHI B, NAZARI A, et al Method of optimisation for ambient temperature cured sustainable geopolymers for 3D printing construction applications[J]. Materials (Basel), 2019, 12 (6): 902
doi: 10.3390/ma12060902
|
15 |
NEMATOLLAHI B, XIA M, VIJAY P, et al. Properties of extrusion-based 3D printable geopolymers for digital construction applications[M]. 3D Concrete Printing Technology. Oxford: Butterworth-Heinemann Elsevier Ltd., 2019: 371-388.
|
16 |
MARCHMENT T, SANJAYAN J, XIA M Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification[J]. Materials and Design, 2019, 169: 107684
doi: 10.1016/j.matdes.2019.107684
|
17 |
PANDA B, PAUL S C, MOHAMED N A N, et al Measurement of tensile bond strength of 3D printed geopolymer mortar[J]. Measurement, 2018, 113: 108- 116
doi: 10.1016/j.measurement.2017.08.051
|
18 |
TAY Y W D, TING G H A, QIAN Y, et al Time gap effect on bond strength of 3D-printed concrete[J]. Virtual and Physical Prototyping, 2018, 14 (1): 104- 113
|
19 |
刘致远, 王振地, 王玲, 等 3D打印水泥净浆层间拉伸强度及层间剪切强度[J]. 硅酸盐学报, 2019, 47 (5): 648- 652 LIU Zhi-yuan, WANG Zhen-di, WANG Ling, et al Interlayer bond strength of 3D printing cement paste by cross-bonded method[J]. Journal of the Chinese Ceramic Society, 2019, 47 (5): 648- 652
|
20 |
余红芸. 钢纤维—水泥基界面过渡区纳米力学性能研究[D]. 武汉: 武汉大学, 2017. YU Hong-yun. Nano-indentation character of interfacial transition zone between steel fiber and cement paste[D]. Wuhan: Wuhan University, 2017.
|
21 |
张鸿儒. 基于界面参数的再生骨料混凝土性能劣化机理及工程应用[D]. 杭州: 浙江大学, 2016. ZHANG Hong-ru. Deterioration mechanical of recycled aggregate concrete (RAC) based on interface parameters and the application of RAC [D]. Hangzhou: Zhejiang University, 2016.
|
22 |
董艳颖. 水泥基复合材料界面区的力学性能试验研究[D]. 内蒙古: 内蒙古工业大学, 2016. DONG Yan-ying. Experimental study on the mechanical properties of the interfacial zone of cement based composites [D]. Inner Mongolia: Inner Mongolia University of Technology, 2016.
|
23 |
CHEN X, WU S, ZHOU J Influence of porosity on compressive and tensile strength of cement mortar[J]. Construction and Building Materials, 2013, 40: 869- 874
doi: 10.1016/j.conbuildmat.2012.11.072
|
24 |
KUMAR R, BHATTACHARJEE B Porosity, pore size distribution and in situ strength of concrete[J]. Cement and Concrete Research, 2003, 33 (1): 155- 164
doi: 10.1016/S0008-8846(02)00942-0
|
25 |
LIAN C, ZHUGE Y, BEECHAM S The relationship between porosity and strength for porous concrete[J]. Construction and Building Materials, 2011, 25 (11): 4294- 4298
doi: 10.1016/j.conbuildmat.2011.05.005
|
26 |
邓朝莉, 李宗利 孔隙率对混凝土力学性能影响的试验研究[J]. 混凝土, 2016, (7): 41- 44 DENG Chao-li, LI Zong-li Experimental study on mechanical properties of concrete with porosity[J]. Concrete, 2016, (7): 41- 44
doi: 10.3969/j.issn.1002-3550.2016.07.011
|
27 |
杜修力, 金浏 考虑孔隙及微裂纹影响的混凝土宏观力学特性研究[J]. 工程力学, 2012, 29 (8): 101- 107 DU Xiu-li, JIN Liu Research on the influence of pores and micro-cracks on the macro-mechanical properties of concrete[J]. Engineering Mechanics, 2012, 29 (8): 101- 107
doi: 10.6052/j.issn.1000-4750.2010.10.0742
|
28 |
白晓玮. 混凝土损伤本构关系的研究与应用[D]. 郑州: 郑州大学, 2017. BAI Xiao-wei. Study and application on the damage constitutive law for concrete[D]. Zhengzhou: Zhengzhou University, 2017.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|