Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (5): 909-920    DOI: 10.3785/j.issn.1008-973X.2020.05.008
土木工程、交通工程     
钢-超高性能混凝土组合板开裂荷载正交试验及计算方法
罗军1,2(),邵旭东1,*(),曹君辉1,樊伟1,裴必达1
1. 湖南大学 土木工程学院,湖南 长沙 410082
2. 郑州大学 力学与安全工程学院,河南 郑州 450001
Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen
Jun LUO1,2(),Xu-dong SHAO1,*(),Jun-hui CAO1,Wei FAN1,Bi-da PEI1
1. College of Civil Engineering, Hunan University, Changsha 410082, China
2. School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
 全文: PDF(1873 KB)   HTML
摘要:

为了研究钢-超高性能混凝土(UHPC)轻型组合桥面结构的横向抗弯开裂性能,综合考虑配筋率、保护层厚度、UHPC层厚度和栓钉间距4个影响因素,对40个钢-UHPC组合板试件进行受弯开裂正交试验. 结果表明,未配筋构件裂缝数量少且裂缝扩展较快,配筋可以提高构件的开裂刚度,加强裂缝扩展阶段,使构件出现多元开裂特性. 配筋率对开裂应力的影响最大,其次是保护层厚度,然后是栓钉间距,UHPC厚度对开裂应力的影响较小. 在配筋率较高时减小保护层厚度,开裂应力提高幅度较大. UHPC厚度为45 mm的组合板的开裂应力为18.7~27.8 MPa,UHPC厚度为60 mm的组合板的开裂应力为17.2~27.4 MPa,远超虎门大桥的工程需求. 根据现有规范公式计算钢-UHPC组合结构开裂荷载偏保守. 根据密集配筋钢-UHPC组合结构特点,提出钢筋应力和开裂荷载计算方法,计算结果和试验实测结果较吻合.

关键词: 轻型组合桥面超高性能混凝土(UHPC)抗弯性能正交试验开裂荷载钢筋应力    
Abstract:

An orthogonal test was accomplished on 40 steel-UHPC composite specimens, in order to study the transverse bending cracking behavior of steel-ultra-high performance concrete (UHPC) lightweight composite deck. Four influence factors were considered, including reinforcement ratio, cover thickness, thickness of UHPC layer, and spacing of studs. Results show that the number of cracks in the unreinforced members is small and the cracks expand rapidly. The reinforcement can increase the cracking stiffness of the specimens and enhance the crack propagation stage, which makes the members exhibit multiple cracking characteristics. For the cracking stress of UHPC, the most significant factor is the reinforcement ratio, followed by the cover thickness and then the spacing of stud shear connectors, whereas the depth of UHPC layers is observed to have limited influence. Reducing the cover thickness can increase the cracking stress greatly when the reinforcement ratio is high. The cracking stress values of the composite plates with thickness of UHPC layer of 45 mm and 60 mm were 18.7~27.8 MPa and 17.2~27.4 MPa, respectively, which is far beyond the engineering requirements of the Humen Bridge. It is too conservative to calculate the cracking load of the steel-UHPC composite structures according to the formulas in the existing code. Calculation methods of reinforcement stress and cracking load were proposed according to the characteristics of dense reinforced steel-UHPC composite structure. The calculated values obtained by the proposed calculation method are in good agreement with those from tests.

Key words: lightweight composite deck    ultra-high performance concrete (UHPC)    flexural performance    orthogonal test    cracking load    reinforcement stress
收稿日期: 2019-01-10 出版日期: 2020-05-05
CLC:  U 443  
基金资助: 国家自然科学基金资助项目(51778223,51708200);湖南省科技重大专项资助项目(2017SK1010)
通讯作者: 邵旭东     E-mail: luojun@hnu.edu.cn;shaoxd@hnu.edu.cn
作者简介: 罗军(1988—),男,博士生,从事超高性能混凝土结构研究. orcid.org/0000-0002-7513-6960. E-mail: luojun@hnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
罗军
邵旭东
曹君辉
樊伟
裴必达

引用本文:

罗军,邵旭东,曹君辉,樊伟,裴必达. 钢-超高性能混凝土组合板开裂荷载正交试验及计算方法[J]. 浙江大学学报(工学版), 2020, 54(5): 909-920.

Jun LUO,Xu-dong SHAO,Jun-hui CAO,Wei FAN,Bi-da PEI. Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 909-920.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.05.008        http://www.zjujournals.com/eng/CN/Y2020/V54/I5/909

序号 构件名称 设计变量 ρ/%
s/mm h/mm c/mm n
1)注:150、200表示栓钉间距,45、60表示UHPC层厚度,15、25表示纵向钢筋保护层厚度,4、6表示纵向钢筋数量.
1 S150-451) 150 45 ? ? 0.0
2 S200-45 200 45 ? ? 0.0
3 S150-60 150 60 ? ? 0.0
4 S200-60 200 60 ? ? 0.0
5 S150-45-15-4 150 45 15 4 3.5
6 S150-45-25-4 150 45 25 4 3.5
7 S200-45-15-4 200 45 15 4 3.5
8 S200-45-25-4 200 45 25 4 3.5
9 S150-45-15-6 150 45 15 6 5.2
10 S150-45-25-6 150 45 25 6 5.2
11 S200-45-15-6 200 45 15 6 5.2
12 S200-45-25-6 200 45 25 6 5.2
13 S150-60-15-4 150 60 15 4 2.6
14 S150-60-25-4 150 60 25 4 2.6
15 S200-60-15-4 200 60 15 4 2.6
16 S200-60-25-4 200 60 25 4 2.6
17 S150-60-15-6 150 60 15 6 3.9
18 S150-60-25-6 150 60 25 6 3.9
19 S200-60-15-6 200 60 15 6 3.9
20 S200-60-25-6 200 60 25 6 3.9
表 1  钢-UHPC组合板设计参数
图 1  配筋构件构造示意图
图 2  钢筋应变片布置示意图
图 3  构件主要制作过程
图 4  钢-UHPC组合板加载示意图
图 5  钢-UHPC组合板试验加载图
图 6  钢-UHPC组合板荷载-位移曲线
图 7  配筋构件屈服阶段裂缝分布图
图 8  未配筋构件裂缝分布图
图 9  主要参数对配筋构件荷载-挠度曲线的影响
构件名称 Fcr/kN σcr/MPa 构件名称 Fcr/kN σcr/MPa
S150-45 15.9 16.0 S200-45-25-4 19.0 18.7
S200-45 17.5 17.6 S200-45-25-6 20.2 18.9
S150-60 25.5 16.1 S150-60-15-4 37.2 21.0
S200-60 28.4 17.9 S150-60-15-6 51.2 27.4
S150-45-15-4 22.2 20.2 S150-60-25-4 31.7 19.1
S150-45-15-6 30.2 27.8 S150-60-25-6 35.6 20.9
S150-45-25-4 19.6 19.6 S200-60-15-4 35.1 19.8
S150-45-25-6 20.5 19.9 S200-60-15-6 49.1 26.4
S200-45-15-4 24.3 22.2 S200-60-25-4 28.7 17.2
S200-45-15-6 29.0 25.3 S200-60-25-6 34.6 20.3
表 2  构件开裂应力计算结果
图 10  截面换算示意图
图 11  配筋率对构件开裂应力的影响
图 12  保护层厚度对开裂应力的影响
图 13  栓钉间距对开裂应力的影响
图 14  UHPC层厚度对开裂应力的影响
构件名称 Ftest FCECS Fcal $\dfrac{{F_{\rm{CECS}}}}{F_{{\rm{test}}}} $ $\dfrac{{F_{\rm{test}}}}{F_{{\rm{cal}}}} $
S150-45-15-4 22.2 12.7 25.3 0.57 0.88
S150-45-15-6 30.2 17.1 29.1 0.57 1.04
S150-45-25-4 19.6 4.5 19.7 0.23 0.99
S150-45-25-6 20.5 6.0 20.8 0.29 0.99
S200-45-15-4 24.3 12.7 25.3 0.52 0.96
S200-45-15-6 29.0 17.1 29.1 0.59 1.00
S200-45-25-4 19.0 4.5 19.7 0.24 0.96
S200-45-25-6 20.2 6.0 20.8 0.30 0.97
S150-60-15-4 37.2 22.8 41.8 0.61 0.89
S150-60-15-6 51.2 31.9 48.1 0.62 1.06
S150-60-25-4 31.7 12.1 33.4 0.38 0.95
S150-60-25-6 35.6 15.6 36.0 0.44 0.99
S200-60-15-4 35.1 22.8 41.8 0.65 0.84
S200-60-15-6 49.1 31.9 48.1 0.65 1.02
S200-60-25-4 28.7 12.1 33.4 0.42 0.86
S200-60-25-6 34.6 15.6 36.0 0.45 0.96
平均值 ? ? ? 0.47 0.96
表 3  计算开裂荷载汇总表
图 15  钢-UHPC组合板钢筋应力计算示意图
图 16  部分构件钢筋应力图
构件 试验值 计算值 计算值/试验值
A1-17.5 7.4 8.3 1.12
A2-17.5 8.8 9.4 1.07
A3-17.5 10.2 10.7 1.05
A1-10 9.7 10.3 1.06
A2-10 12.3 13.0 1.06
B4-15 31.4 28.3 0.90
B4-22 22.6 23.1 1.02
B6-22 24.7 25.4 1.03
C1-15 8.3 6.9 0.83
C3-15 8.7 7.9 0.90
C5-15 11.5 9.1 0.79
表 4  文献开裂荷载试验值[10, 21-22]和计算值
1 YOO D Y, BANTHIA N Mechanical properties of ultra- high-performance fiber-reinforced concrete: a review[J]. Cement and Concrete Composites, 2016, 73: 267- 280
doi: 10.1016/j.cemconcomp.2016.08.001
2 ABBAS S, NEHDI M L, SALEEM M A Ultra-high performance concrete: mechanical performance, durability, sustainability and implementation challenges[J]. International Journal of Concrete Structures and Materials, 2016, 10 (3): 271- 295
doi: 10.1007/s40069-016-0157-4
3 邵旭东, 胡建华. 钢-超高性能混凝土轻型组合桥梁结构[M]. 北京: 人民交通出版社, 2015.
4 邵旭东, 曹君辉, 易笃涛, 等 正交异性钢板-薄层RPC组合桥面基本性能研究[J]. 中国公路学报, 2012, 25 (2): 40- 45
SHAO Xu-dong, CAO Jun-hui, YI Du-tao, et al Research on basic performance of composite bridge deck system with orthotropic steel deck and thin RPC layer[J]. China Journal of Highway and Transport, 2012, 25 (2): 40- 45
doi: 10.3969/j.issn.1001-7372.2012.02.007
5 SHAO X D, YI D T, HUANG Z Y, et al Basic performance of the composite deck system composed of orthotropic steel deck and ultra-thin RPC layer[J]. Journal of Bridge Engineering, 2013, 18 (5): 417- 428
doi: 10.1061/(ASCE)BE.1943-5592.0000348
6 ZHANG S H, SHAO X D, CAO J H, et al Fatigue performance of a lightweight composite bridge deck with open ribs[J]. Journal of Bridge Engineering, 2016, 21 (7): 04016039
doi: 10.1061/(ASCE)BE.1943-5592.0000905
7 CAO J H, SHAO X D, DENG L, et al Static and fatigue behavior of short-headed studs embedded in a thin ultrahigh-performance concrete layer[J]. Journal of Bridge Engineering, 2017, 22 (5): 04017005
doi: 10.1061/(ASCE)BE.1943-5592.0001031
8 SHAO X D, CAO J H Fatigue assessment of steel-UHPC lightweight composite deck based on multiscale FE analysis: case study[J]. Journal of Bridge Engineering, 2018, 23 (1): 05017015
doi: 10.1061/(ASCE)BE.1943-5592.0001146
9 吴冲. 现代钢桥[M]. 北京: 人民交通出社, 2006.
10 邵旭东, 张哲, 刘梦麟, 等 正交异性钢-RPC组合桥面板弯拉强度的试验研究[J]. 湖南大学学报, 2012, 39 (10): 7- 13
SHAO Xu-dong, ZHANG Zhe, LIU Meng-lin, et al Research on bending tensile strength for composite bridge deck system composed of orthotropic steel deck and thin RPC topping[J]. Journal of Hunan University, 2012, 39 (10): 7- 13
11 KWAHK I, LEE J, KIM J, et al Evaluation of the crack width of the ultra high performance concrete (K-UHPC) structures[J]. Journal of the Korean Society of Safety, 2012, 27 (6): 99- 108
12 邓宗才, 王义超, 肖锐, 等 高强钢筋UHPC梁抗弯性能试验与理论分析[J]. 应用基础与工程科学学报, 2015, 23 (1): 68- 78
DENG Zong-cai, WANG Yi-chao, XIAO Rui, et al Experimental study and analysis on flexural property of UHPC beams with high strength steel[J]. Journal of Basic Science and Engineering, 2015, 23 (1): 68- 78
13 RAHDAR H A, GHALEHNOVI M Post-cracking behavior of UHPC on the concrete members reinforced by steel rebar[J]. Journal of Computers and Concrete, 2016, 18 (1): 139- 154
doi: 10.12989/cac.2016.18.1.139
14 徐海宾, 邓宗才 UHPC梁开裂和裂缝试验[J]. 哈尔滨工业大学学报, 2014, 46 (4): 87- 92
XU Hai-bin, DENG Zong-cai Cracking moment and crack width of ultra-high performance concrete beams[J]. Journal of Harbin Institute of Technology, 2014, 46 (4): 87- 92
doi: 10.11918/j.issn.0367-6234.2014.04.015
15 金凌志, 何培, 祁凯能, 等 高强钢筋活性粉末混凝土简支梁斜裂缝宽度试验研究[J]. 武汉大学学报, 2014, 47 (5): 665- 670
JIN Ling-zhi, HE Pei, QI Kai-neng, et al Experimental study of diagonal crack width of high strength reinforced reactive powder concrete simply-supported beam[J]. Journal of Wuhan University, 2014, 47 (5): 665- 670
16 PREM P R, MURTHY A R Acoustic emission and flexural behavior of RC beams strengthened with UHPC overlay[J]. Construction and Building Materials, 2016, 123: 481- 492
doi: 10.1016/j.conbuildmat.2016.07.033
17 TANARSLAN H M, ALVER N, JAHANGIRI R, et al Flexural strengthening of RC beams using UHPFRC laminates: bonding techniques and rebar addition[J]. Construction and Building Materials, 2017, 155: 45- 55
doi: 10.1016/j.conbuildmat.2017.08.056
18 CHOI W, CHOI Y, YOO S W, Flexural design and analysis of composite beams with inverted-T steel girder with ultrahigh performance concrete slab [J/OL]. Advances in Civil Engineering, 2018: 1356027 [2019-01-11]. https://doi.org/10.1155/2018/1356027.
19 YOO S W, CHOO J F Evaluation of the flexural behavior of composite beam with inverted-T steel girder and steel fiber reinforced ultra high performance concrete slab[J]. Engineering Structures, 2016, 118: 1- 15
doi: 10.1016/j.engstruct.2016.03.052
20 DIENG L, MARCHAND P, GOMES F, et al Use of UHPFRC overlay to reduce stresses in orthotropic steel decks[J]. Journal of Constructional Steel Research, 2013, 89: 30- 41
doi: 10.1016/j.jcsr.2013.06.006
21 李文光, 邵旭东, 方恒, 等 钢 -UHPC组合板受弯性能的试验研究[J]. 土木工程学报, 2015, 48 (11): 93- 102
LI Wen-guang, SHAO Xu-dong, FANG Heng, et al Experimental study on flexural behavior of steel-UHPC composite slabs[J]. China Civil Engineering Journal, 2015, 48 (11): 93- 102
22 邵旭东, 张松涛, 张良, 等 钢 -超薄UHPC层轻型组合桥面性能研究[J]. 重庆交通大学学报, 2016, 35 (1): 22- 27
SHAO Xu-dong, ZHANG Song-tao, ZHANG Liang, et al Performance of light-type composite bridge deck system with steel and ultra-thin UHPC layer[J]. Journal of Chongqing Jiaotong University, 2016, 35 (1): 22- 27
23 AFNOR. Ultra-high performance fibre-reinforced concrete [S]. France: Association Francaise de Normalisation, 2016.
24 RAFIEE J. Computer modeling and investgation on the steel corrosion in cracked ultra high performance concrete [D]. Kassel: Kassel University, 2012.
25 丁楠, 邵旭东 轻型组合桥面板的疲劳性能研究[J]. 土木工程学报, 2015, 48 (1): 74- 81
DING Nan, SHAO Xu-dong Research on fatigue performance of lightweight composite bridge deck[J]. China Civil Engineering Journal, 2015, 48 (1): 74- 81
26 中华人民共和国交通运输部. 公路桥涵设计通用规范: JTG D60-2015 [S]. 北京: 人民交通出版社, 2015.
27 中华人民共和国交通部. 公路钢筋混凝土及预应力混凝土桥涵设计规范: JTG D62-2004 [S]. 北京: 人民交通出版社, 2004.
28 中国工程建设标准化协会. 纤维混凝土结构技术规程: CECS38-2004 [S]. 北京: 中国计划出版社, 2004.
29 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB50010-2010 [S]. 北京: 中国建筑工业出版社, 2011.
30 张哲, 邵旭东, 李文光, 等 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28 (8): 50- 58
ZHANG Zhe, SHAO Xu-dong, LI Wen-guang, et al Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport, 2015, 28 (8): 50- 58
doi: 10.3969/j.issn.1001-7372.2015.08.007
[1] 王立国,邵旭东,曹君辉,陈玉宝,何广,王洋. 基于超短栓钉的钢-超薄UHPC组合桥面性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2027-2037.
[2] 张正旋, 陈刚, 徐铨彪, 龚顺风, 肖志斌, 刘承斌. 预应力钢绞线超高强混凝土H型桩弯剪性能试验研究[J]. 浙江大学学报(工学版), 2019, 53(1): 31-39.
[3] 傅晓云, 雷磊, 杨钢, 李宝仁. 喷水推进型水下滑翔机的水平翼参数配置及定常运动分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1499-1508.
[4] 叶居东, 杨贞军, 刘国华, 姚勇. 超高性能混凝土-螺旋钢纤维拉拔力的解析解及实验验证[J]. 浙江大学学报(工学版), 2018, 52(10): 1911-1918.
[5] 徐铨彪, 陈刚, 贺景峰, 龚顺风, 肖志斌. 复合配筋混凝土预制方桩接头抗弯性能试验[J]. 浙江大学学报(工学版), 2017, 51(7): 1300-1308.
[6] 臧俊超, 郑凌逶, 谢新宇, 曹丽文,李卓明. 生活源污染土电渗加固试验[J]. 浙江大学学报(工学版), 2017, 51(2): 245-254.
[7] 谢卢鑫,胡金冰,吴剑锋,王俊. 整秆式甘蔗收获机断尾机构虚拟试验研究[J]. 浙江大学学报(工学版), 2016, 50(9): 1662-1670.
[8] 徐铨彪,陈刚,贺景峰,龚顺风. 复合配筋混凝土预制方桩抗弯性能试验[J]. 浙江大学学报(工学版), 2016, 50(9): 1768-1776.
[9] 裴晓朋,王国林,周海超,赵璠. 胎面结构设计参数对轮胎振动噪声的影响[J]. 浙江大学学报(工学版), 2016, 50(5): 871-878.
[10] 赵翠峰 方仕江 罗嘉亮 詹学贵 邵月刚. 加成型室温硫化硅橡胶的制备——I.交联剂及填料的影响规律[J]. J4, 2007, 41(7): 1219-1222.
[11] 卢刚 郑平. 气升式内循环反应器短程硝化控制策略的研究[J]. J4, 2005, 39(4): 542-546.