|
|
生物墨水挤出打印成型精度评价方法概述 |
林泽宁( ),蒋涛*( ),尚建忠,杨云,洪阳,罗自荣 |
国防科技大学 智能科学学院,湖南 长沙 410073 |
|
Overview of methods for evaluating accuracy of bioink extrusion bioprinting |
Ze-ning LIN( ),Tao JIANG*( ),Jian-zhong SHANG,Yun YANG,Yang HONG,Zi-rong LUO |
College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China |
引用本文:
林泽宁,蒋涛,尚建忠,杨云,洪阳,罗自荣. 生物墨水挤出打印成型精度评价方法概述[J]. 浙江大学学报(工学版), 2023, 57(4): 643-656.
Ze-ning LIN,Tao JIANG,Jian-zhong SHANG,Yun YANG,Yang HONG,Zi-rong LUO. Overview of methods for evaluating accuracy of bioink extrusion bioprinting. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 643-656.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.04.001
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I4/643
|
81 |
LIU S H, ZHANG H G, AHLFELD T, et al. Evaluation of different crosslinking methods in altering the properties of extrusion-printed chitosan-based multi-material hydrogel composites [EB/OL]. 2022-04-01. https://link.springer.com.article/10.1007/S42242-022-00194-3.
|
82 |
NOWICKI M, ZHU W, SARKAR K, et al 3D printing multiphasic osteochondral tissue constructs with nano to micro features via PCL based bioink[J]. Bioprinting, 2020, 17: e00066
doi: 10.1016/j.bprint.2019.e00066
|
1 |
MEI Q, YUEN H Y, ZHAO X Mechanical stretching of 3D hydrogels for neural stem cell differentiation[J]. Bio-Design and Manufacturing, 2022, 5: 714- 728
doi: 10.1007/s42242-022-00209-z
|
2 |
SCHäTZLEIN E, BLAESER A Recent trends in bioartificial muscle engineering and their applications in cultured meat, biorobotic systems and biohybrid implants[J]. Communications Biology, 2022, 5 (737): 1- 17
|
3 |
RONZONI F L, ALIBERTI F, SCOCOZZA F, et al Myoblast 3D bioprinting to burst in vitro skeletal muscle differentiation[J]. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16: 484- 495
doi: 10.1002/term.3293
|
4 |
FATIMI A, OKORO O V, PODSTAWCZYK D, et al Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: a review[J]. Gels, 2022, 8 (3): 1- 55
|
5 |
付小兵, 黄沙. 生物3D打印与再生医学[M]. 武汉: 华中科技大学出版社, 2020.
|
6 |
吴春亚, 吴佳昊, 吴喆冉, 等 生物3D打印技术的新研究进展[J]. 机械工程学报, 2021, 57 (5): 114- 132 WU Chun-ya, WU Jia-hao, WU Zhe-ran, et al New progress of biological 3D printing technology[J]. Journal of Mechanical Engineering, 2021, 57 (5): 114- 132
doi: 10.3901/JME.2021.05.114
|
7 |
贺永, 高庆, 刘安, 等 生物3D打印——从形似到神似[J]. 浙江大学学报: 工学版, 2019, 53 (3): 407- 419 HE Yong, GAO Qing, LIU An, et al 3D bioprinting: from structure to function[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (3): 407- 419
|
8 |
BIENIA M, LEJEUNE M, CHAMBON M, et al Inkjet printing of ceramic colloidal suspensions: filament growth and breakup[J]. Chemical Engineering Science, 2016, 149: 1- 13
doi: 10.1016/j.ces.2016.04.015
|
9 |
MA X, QU X, ZHU W, et al Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (8): 2206- 2211
doi: 10.1073/pnas.1524510113
|
10 |
白大鹏, 张洪, 李季杨 生物3D打印装置及打印模型形貌检测[J]. 浙江大学学报: 工学版, 2021, 55 (2): 289- 298 BAI Da-peng, ZHANG Hong, LI Ji-yang Biological 3D printer and topography detection of printing model[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (2): 289- 298
|
11 |
CUI X L, LI J, HARTANTO Y, et al. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks [J]. Advanced Healthcare Materials, 2020, 9(15): 1901648.
|
12 |
PLACONE J K, ENGLER A J. Recent advances in extrusion-based 3D printing for biomedical applications [J]. Advanced Healthcare Materials, 2018, 7(8): 1701161.
|
13 |
IN Z B Y, LI Y R, YU K, et al. 3D printing of physical organ models: recent developments and challenges [J]. Advanced Science, 2021, 8(17): 2101394.
|
14 |
毛宏理, 顾忠伟 生物3D打印高分子材料发展现状与趋势[J]. 中国材料进展, 2018, 37 (12): 949- 969 MAO Hong-li, GU Zhong-wei Polymers in 3D bioprinting: progress and challenges[J]. Materials China, 2018, 37 (12): 949- 969
|
15 |
朱敏, 黄婷, 杜晓宇, 等 生物材料的3D打印研究进展[J]. 上海理工大学学报, 2017, 39 (5): 473- 483 ZHU Min, HUANG Ting, DU Xiao-yu, et al Progress of the 3D printing technology for biomaterials[J]. Journal of University of Shanghai for Science and Technology, 2017, 39 (5): 473- 483
|
16 |
SOMASEKHAR L, HUYNH N D, VECHECK A, et al Three-dimensional printing of cell-laden microporous constructs using blended bioinks[J]. Journal of Biomedical Materials Research Part A, 2022, 110 (3): 535- 546
doi: 10.1002/jbm.a.37303
|
17 |
OZBOLAT I T, HOSPODIUK M Current advances and future perspectives in extrusion-based bioprinting[J]. Biomaterials, 2016, 76: 321- 343
doi: 10.1016/j.biomaterials.2015.10.076
|
18 |
GLEADALL A, VISSCHER D, YANG J, et al Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance[J]. Burns and Trauma, 2018, 6 (19): 025020
|
19 |
ZHOU K, SUN Y D, YANG J Q, et al Hydrogels for 3D embedded bioprinting: a focused review on bioinks and support baths[J]. Journal of Materials Chemistry B, 2022, 10 (12): 1897- 1907
doi: 10.1039/D1TB02554F
|
20 |
WANG Y, YUAN X, YAO B, et al Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing[J]. Bioactive Materials, 2022, 17: 178- 194
doi: 10.1016/j.bioactmat.2022.01.024
|
21 |
CHOE R, DEVOY E, KUZEMCHAK B, et al Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering[J]. Biofabrication, 2022, 14 (2): 025015
doi: 10.1088/1758-5090/ac5220
|
22 |
CIDONIO G, GLINKA M, DAWSON J I, et al The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine[J]. Biomaterials, 2019, 209: 10- 24
doi: 10.1016/j.biomaterials.2019.04.009
|
23 |
ANAND R, AMOLI M S, HUYSECOM A-S, et al A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing[J]. Biomedical Materials, 2022, 17 (4): 045027
doi: 10.1088/1748-605X/ac78b8
|
24 |
BOONLAI W, HIRUN N, SUKNUNTHA K, et al. Development and characterization of pluronic F127 and methylcellulose based hydrogels for 3D bioprinting [EB/OL]. (2022-04-28). https://link.springer.com/article/10.1007/s00289-022-04271-6.
|
25 |
SONG S, LIU X, HUANG J, et al Neural stem cell-laden 3D bioprinting of polyphenol-doped electroconductive hydrogel scaffolds for enhanced neuronal differentiation[J]. Biomaterials Advances, 2022, 133: 112639
doi: 10.1016/j.msec.2021.112639
|
26 |
SU H, LI Q, LI D, et al A versatile strategy to construct free-standing multi-furcated vessels and a complicated vascular network in heterogeneous porous scaffolds via combination of 3D printing and stimuli-responsive hydrogels[J]. Materials Horizons, 2022, 9 (9): 2393- 2407
doi: 10.1039/D2MH00314G
|
27 |
DATTA P, VYAS V, DHARA S, et al Anisotropy properties of tissues: a basis for fabrication of biomimetic anisotropic scaffolds for tissue engineering[J]. Journal of Bionic Engineering, 2019, 16 (5): 842- 868
doi: 10.1007/s42235-019-0101-9
|
28 |
SCHWAB A, LEVATO R, D'ESTE M, et al Printability and shape fidelity of bioinks in 3D bioprinting[J]. Chemical Reviews, 2020, 120 (19): 10850- 10877
|
29 |
KYLE S, JESSOP Z M, AL-SABAH A, et al ‘Printability’ of candidate biomaterials for extrusion based 3D printing: state-of-the-art[J]. Advanced Healthcare Materials, 2017, 6 (16): 1700264
doi: 10.1002/adhm.201700264
|
30 |
马爱洁, 杨晶晶, 陈卫星. 聚合物流变学基础[M]. 北京: 化学工业出版社, 2018.
|
31 |
JIANG T, MUNGUIA-LOPEZ J G, FLORES-TORRES S, et al Extrusion bioprinting of soft materials: an emerging technique for biological model fabrication[J]. Applied Physics Reviews, 2019, 6 (1): 011310
doi: 10.1063/1.5059393
|
32 |
PAXTON N, SMOLAN W, BOCK T, et al Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability[J]. Biofabrication, 2017, 9 (4): 044107
doi: 10.1088/1758-5090/aa8dd8
|
33 |
吴其晔, 巫静安. 高分子材料流变学[M]. 北京: 高等教育出版社, 2014.
|
34 |
COGSWELL F N Converging flow of polymer melts in extrusion dies[J]. Polymer Engineering and Science, 1972, 12 (1): 64- 73
|
35 |
SNELLING G R, LONTZ J F Mechanism of lubricant-extrusion of teflon tfe-tetrafluoroethylene resins[J]. Journal of Applied Polymer Science, 1960, 3 (9): 257- 265
doi: 10.1002/app.1960.070030901
|
36 |
BENBOW J J The dependence of output rate on die shape during catalyst extrusion[J]. Chemical Engineering Science, 1971, 26 (9): 1467- 1473
doi: 10.1016/0009-2509(71)80066-0
|
37 |
BENBOW J J, OXLEY E W, BRIDGWATER J The extrusion mechanics of pastes: the influence of paste formulation on extrusion parameters[J]. Chemical Engineering Science, 1987, 42 (9): 2151- 2162
doi: 10.1016/0009-2509(87)85036-4
|
38 |
BENBOW J J, JAZAYERI S H, BRIDGWATER J The flow of pastes through dies of complicated geometry[J]. Powder Technology, 1991, 65 (1): 393- 401
|
39 |
TALLURI D J S, NGUYEN H T, AVAZMOHAMMADI R, et al Ink rheology regulates stability of bioprinted strands[J]. Journal of Biomechanical, 2022, 144 (7): 074503
doi: 10.1115/1.4053404
|
40 |
LIN S, LI B, YANG L, et al New method for reducing viscosity and shear stress in hydrogel 3D printing via multidimension vibration[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2022, 25 (16): 1796- 1811
doi: 10.1080/10255842.2022.2039129
|
41 |
FANG Y, GUO Y, LIU T, et al Advances in 3D bioprinting[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, 1 (1): 100011
doi: 10.1016/j.cjmeam.2022.100011
|
42 |
顾亚伟, 李牧, 范子文, 等 3D挤压成型生物打印含细胞水凝胶的理化性能[J]. 中国组织工程研究, 2018, 22 (22): 3583- 3588 GU Ya-wei, LI Mu, FAN Zi-wen, et al Physical and chemical properties of 3D extrusive bioprinting cell-encapsulated hydrogel[J]. Chinese Journal of Tissue Engineering Research, 2018, 22 (22): 3583- 3588
doi: 10.3969/j.issn.2095-4344.0746
|
43 |
LEE S C, GILLISPIE G, PRIM P, et al Physical and chemical factors influencing the printability of hydrogel-based extrusion bioinks[J]. Chemical Reviews, 2020, 120 (19): 10797- 10849
|
44 |
尚建忠, 蒋涛, 唐力, 等 可移植人体外耳支架的3D打印关键技术[J]. 国防科技大学学报, 2016, 38(1): 175-180. SHANG Jian-zhong, JIANG Tao, TANG Li, et al. Key technology of transplantable human auricular scaffold based on 3D printing [J]. Journal of National University of Defense Technology, 2016, 38(1): 175-180.
|
45 |
LEE J W, AHN G, KIM J Y, et al Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology[J]. Journal of Materials Science-Materials in Medicine, 2010, 21 (12): 3195- 3205
doi: 10.1007/s10856-010-4173-7
|
46 |
SOBRAL J M, CARIDADE S G, SOUSA R A, et al Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency[J]. Acta Biomaterialia, 2011, 7 (3): 1009- 1018
doi: 10.1016/j.actbio.2010.11.003
|
47 |
HABIB A, SATHISH V, MALLIK S, et al 3D printability of alginate-carboxymethyl cellulose hydrogel[J]. Materials, 2018, 11 (3): 454
doi: 10.3390/ma11030454
|
48 |
DRAVID A, MCCAUGHEY-CHAPMAN A, RAOS B, et al Development of agarose–gelatin bioinks for extrusion-based bioprinting and cell encapsulation[J]. Biomedical Materials, 2022, 17 (5): 055001
doi: 10.1088/1748-605X/ac759f
|
49 |
NAGAHARA M H T, DECARLI M C, NETO P I, et al Crosslinked alginate-xanthan gum blends as effective hydrogels for 3D bioprinting of biological tissues[J]. Journal of Applied Polymer Science, 2022, 139 (28): e52612
|
50 |
OUYANG L Pushing the rheological and mechanical boundaries of extrusion-based 3D bioprinting[J]. Trends in Biotechnology, 2022, 40 (7): 891- 902
doi: 10.1016/j.tibtech.2022.01.001
|
51 |
CHIMENE D, KAUNAS R, GAHARWAR A K Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies[J]. Advanced Materials, 2020, 32 (1): e1902026
doi: 10.1002/adma.201902026
|
52 |
BLAESER A, DUARTE CAMPOS D F, PUSTER U, et al Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity[J]. Advanced Healthcare Materials, 2016, 5 (3): 326- 333
doi: 10.1002/adhm.201500677
|
53 |
CUI Y, JIN R, ZHANG Y, et al Cellulose nanocrystal-enhanced thermal-sensitive hydrogels of block copolymers for 3D bioprinting[J]. International Journal of Bioprinting, 2021, 7 (4): 112- 122
doi: 10.18063/ijb.v7i4.397
|
54 |
RAMIREZ CABALLERO S S, SAIZ E, MONTEMBAULT A, et al 3-D printing of chitosan-calcium phosphate inks: rheology, interactions and characterization[J]. Journal of Materials Science: Materials in Medicine, 2018, 30 (1): 1- 6
|
55 |
XU H H K, WANG P, WANG L, et al Calcium phosphate cements for bone engineering and their biological properties[J]. Bone Research, 2017, 5 (1): 17056
doi: 10.1038/boneres.2017.56
|
56 |
JI S, GUVENDIREN M Recent advances in bioink design for 3D bioprinting of tissues and organs[J]. Frontiers in Bioengineering and Biotechnology, 2017, 5: 23
|
57 |
MOUSER V H M, MELCHELS F P W, VISSER J, et al Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting[J]. Biofabrication, 2016, 8 (3): 035003
doi: 10.1088/1758-5090/8/3/035003
|
58 |
KIM M H, LEE Y W, JUNG W K, et al Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98: 187- 194
doi: 10.1016/j.jmbbm.2019.06.014
|
59 |
SCHWARTZ R, MALPICA M, THOMPSON G L, et al Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103: 103524
doi: 10.1016/j.jmbbm.2019.103524
|
60 |
SKARDAL A, ZHANG J, PRESTWICH G D Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates[J]. Biomaterials, 2010, 31 (24): 6173- 6181
doi: 10.1016/j.biomaterials.2010.04.045
|
61 |
董兰兰, 李亘, 熊胤泽, 等 GelMA/LPN/MC水凝胶的挤出式3D打印工艺与性能研究[J]. 机械工程学报, 2022, 58 (9): 283- 290 DONG Lan-lan, LI Gen, XIONG Yin-ze, et al Extrusion 3D printing processes and performance evaluation of GelMA/LPN/MC hydrogel[J]. Journal of Mechanical Engineering, 2022, 58 (9): 283- 290
doi: 10.3901/JME.2022.09.283
|
62 |
顾恒, 连芩, 王慧超, 等 GelMA复合凝胶的挤出式3D打印工艺及其性能研究[J]. 机械工程学报, 2020, 56 (1): 196- 204 GU Heng, LIAN Qin, WANG Hui-chao, et al Extrusion 3D printing processes and performance evaluation of GelMA composite hydrogel[J]. Journal of Mechanical Engineering, 2020, 56 (1): 196- 204
doi: 10.3901/JME.2020.01.196
|
63 |
NAGHIEH S, CHEN D Printability: a key issue in extrusion-based bioprinting[J]. Journal of Pharmaceutical Analysis, 2021, 11 (5): 564- 579
doi: 10.1016/j.jpha.2021.02.001
|
64 |
LIN Z N, JIANG T, KINSELLA J M, et al Assessing roughness of extrusion printed soft materials using a semi-quantitative method[J]. Materials Letters, 2021, 303: 4
|
65 |
HE Y, YANG F, ZHAO H, et al Research on the printability of hydrogels in 3D bioprinting[J]. Scientific Reports, 2016, 6 (1): 29977
doi: 10.1038/srep29977
|
66 |
KHODA A K M, OZBOLAT I T, KOC B A functionally gradient variational porosity architecture for hollowed scaffolds fabrication[J]. Biofabrication, 2011, 3 (3): 034106
doi: 10.1088/1758-5082/3/3/034106
|
67 |
CUTOLO A, NEIRINCK B, LIETAERT K, et al Influence of layer thickness and post-process treatments on the fatigue properties of CoCr scaffolds produced by laser powder bed fusion[J]. Additive Manufacturing, 2018, 23: 498- 504
doi: 10.1016/j.addma.2018.07.008
|
68 |
RUIZ-CANTU L, GLEADALL A, FARIS C, et al Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing[J]. Biofabrication, 2016, 8 (1): 015016
doi: 10.1088/1758-5090/8/1/015016
|
69 |
HINTON T J, JALLERAT Q, PALCHESKO R, et al Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels[J]. Science Advances, 2015, 1 (9): e1500758
doi: 10.1126/sciadv.1500758
|
70 |
MALEKPOUR A, CHEN X Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views[J]. Journal of Functional Biomaterials, 2022, 13 (2): 40
doi: 10.3390/jfb13020040
|
71 |
JIN Z, ZHANG Z, SHAO X, et al. Monitoring anomalies in 3D bioprinting with deep neural networks [EB/OL]. 2021-04-21. https://pubs.acs.org/doi/10.1021/acsbiomaterials.0c01761.
|
72 |
RUBERU K, SENADEERA M, RANA S, et al. Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing [J]. Applied Materials Today, 2021, 22: 100914.
|
73 |
LEPPINIEMI J, LAHTINEN P, PAAJANEN A, et al 3D-printable bioactivated nanocellulose–alginate hydrogels[J]. ACS Applied Materials and Interfaces, 2017, 9 (26): 21959- 21970
doi: 10.1021/acsami.7b02756
|
74 |
BILLIET T, GEVAERT E, DE SCHRYVER T, et al The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability[J]. Biomaterials, 2014, 35 (1): 49- 62
doi: 10.1016/j.biomaterials.2013.09.078
|
75 |
SOLTAN N, NING L, MOHABATPOUR F, et al Printability and cell viability in bioprinting alginate dialdehyde-gelatin scaffolds[J]. ACS Biomaterials Science and Engineering, 2019, 5 (6): 2976- 2987
|
76 |
BEDNARZIG V, SCHRUFER S, SCHNEIDER T C, et al Improved 3D printing and cell biology characterization of inorganic-filler containing alginate-based composites for bone regeneration: particle shape and effective surface area are the dominant factors for printing performance[J]. International Journal of Molecular Sciences, 2022, 23 (9): 4750
doi: 10.3390/ijms23094750
|
77 |
OUYANG L L, YAO R, ZHAO Y, et al Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells[J]. Biofabrication, 2016, 8 (3): 035020
doi: 10.1088/1758-5090/8/3/035020
|
78 |
DISTLER T, POLLEY C, SHI F, et al Electrically conductive and 3D-printable oxidized alginate-gelatin polypyrrole: PSS hydrogels for tissue engineering[J]. Advanced Healthcare Materials, 2021, 10 (9): e2001876
doi: 10.1002/adhm.202001876
|
79 |
GIUSEPPE M D, LAW N, WEBB B, et al Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79: 150- 157
doi: 10.1016/j.jmbbm.2017.12.018
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|