机械工程、能源工程 |
|
|
|
|
基于集成概率模型的变阻抗机器人打磨力控制 |
郭万金1,2,3( ),赵伍端1,利乾辉1,赵立军2,4,曹雏清3,4 |
1. 长安大学 道路施工技术与装备教育部重点实验室,陕西 西安 710064 2. 哈尔滨工业大学 机器人技术与系统国家重点实验室,黑龙江 哈尔滨 150001 3. 芜湖哈特机器人产业技术研究院有限公司,博士后工作站,安徽 芜湖 241007 4. 长三角哈特机器人产业技术研究院,安徽 芜湖 241007 |
|
Ensemble probabilistic model based variable impedance for robotic grinding force control |
Wan-jin GUO1,2,3( ),Wu-duan ZHAO1,Qian-hui LI1,Li-jun ZHAO2,4,Chu-qing CAO3,4 |
1. Key Laboratory of Road Construction Technology and Equipment, Ministry of Education, Chang’an University, Xi'an 710064, China 2. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China 3. Post-Doctoral Research Center, Wuhu HIT Robot Technology Research Institute Limited Company, Wuhu 241007, China 4. Yangtze River Delta HIT Robot Technology Research Institute, Wuhu 241007, China |
引用本文:
郭万金,赵伍端,利乾辉,赵立军,曹雏清. 基于集成概率模型的变阻抗机器人打磨力控制[J]. 浙江大学学报(工学版), 2023, 57(12): 2356-2366.
Wan-jin GUO,Wu-duan ZHAO,Qian-hui LI,Li-jun ZHAO,Chu-qing CAO. Ensemble probabilistic model based variable impedance for robotic grinding force control. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2356-2366.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.12.002
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I12/2356
|
1 |
ZHU D, FENG X, XU X, et al Robotic grinding of complex components: a step towards efficient and intelligent machining–challenges, solutions, and applications[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65: 101908
doi: 10.1016/j.rcim.2019.101908
|
2 |
黄云, 肖贵坚, 邹莱 航空发动机叶片机器人精密砂带磨削研究现状及发展趋势[J]. 航空学报, 2019, 40 (3): 022508 HUANG Yun, XIAO Gui-jian, ZOU Lai Current situation and development trend of robot precise belt grinding for aero-engine blade[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40 (3): 022508
|
3 |
LIU L, ULRICH B J, ELBESTAWI M A. Robotic grinding force regulation: design, implementation and benefits [C]// IEEE International Conference on Robotics and Automation. Cincinnati: IEEE, 1990: 258-265.
|
4 |
WANG Q, WANG W, ZHENG L, et al Force control-based vibration suppression in robotic grinding of large thin-wall shells[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67: 102031
doi: 10.1016/j.rcim.2020.102031
|
5 |
LI D, YANG J, ZHAO H, et al Contact force plan and control of robotic grinding towards ensuring contour accuracy of curved surfaces[J]. International Journal of Mechanical Sciences, 2022, 227: 107449
doi: 10.1016/j.ijmecsci.2022.107449
|
6 |
ZHANG T, XIAO M, ZOU Y B, et al Robotic curved surface tracking with a neural network for angle identification and constant force control based on reinforcement learning[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21: 869- 882
doi: 10.1007/s12541-020-00315-x
|
7 |
甘亚辉, 段晋军, 戴先中 非结构环境下的机器人自适应变阻抗力跟踪控制方法[J]. 控制与决策, 2019, 34 (10): 2134- 2142 GAN Ya-hui, DUAN Jin-jun, DAI Xian-zhong Adaptive variable impedance control for robot force tracking in unstructured environment[J]. Control and Decision, 2019, 34 (10): 2134- 2142
|
8 |
李超, 张智, 夏桂华, 等 基于强化学习的学习变阻抗控制[J]. 哈尔滨工程大学学报, 2019, 40 (2): 304- 311 LI Chao, ZHANG Zhi, XIA Gui-hua, et al Learning variable impedance control based on reinforcement learning[J]. Journal of Harbin Engineering University, 2019, 40 (2): 304- 311
|
9 |
ZHOU H, MA S, WANG G, et al A hybrid control strategy for grinding and polishing robot based on adaptive impedance control[J]. Advances in Mechanical Engineering, 2021, 13 (3): 1- 21
|
10 |
SHEN Y, LU Y, ZHUANG C A fuzzy-based impedance control for force tracking in unknown environment[J]. Journal of Mechanical Science and Technology, 2022, 36: 5231- 5242
doi: 10.1007/s12206-022-0936-6
|
11 |
ZHONG Y, WANG T, PU Y, et al An adaptive bilateral impedance control based on nonlinear disturbance observer for different flexible targets grasping[J]. Computers and Electrical Engineering, 2022, 103: 108388
doi: 10.1016/j.compeleceng.2022.108388
|
12 |
WU X, HUANG Z, WAN Y, et al A novel force-controlled spherical polishing tool combined with self-rotation and co-rotation motion[J]. IEEE Access, 2020, 8: 108191- 108200
doi: 10.1109/ACCESS.2020.2997968
|
13 |
MOHAMMAD A E K, HONG J, WANG D, et al Synergistic integrated design of an electrochemical mechanical polishing end-effector for robotic polishing applications[J]. Robotics and Computer-Integrated Manufacturing, 2019, 55: 65- 75
doi: 10.1016/j.rcim.2018.07.005
|
14 |
郭万金, 赵伍端, 于苏扬, 等 无先验模型曲面的机器人打磨主动自适应在线轨迹预测方法[J]. 浙江大学学报: 工学版, 2023, 57 (8): 1655- 1666 GUO Wan-jin, ZHAO Wu-duan, YU Su-yang, et al Active adaptive online trajectory prediction for robotic grinding on surface without prior model[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (8): 1655- 1666
|
15 |
HOGAN N. Impedance control: an approach to manipulation [C]// 1984 American Control Conference. San Diego: IEEE, 1984: 304-313.
|
16 |
OTT C, MUKHERJEE R, NAKAMURA Y. Unified impedance and admittance control [C]// 2010 IEEE International Conference on Robotics and Automation. Anchorage: IEEE, 2010: 554-561.
|
17 |
肖蒙. 机器人打磨加工过程中恒力控制方法研究[D]. 广州: 华南理工大学, 2020. XIAO Meng. Research on constant force control methods in robot grinding process [D]. Guangzhou: South China University of Technology, 2020.
|
18 |
DEISENROTH M P, RASMUSSEN C E. PILCO: a model-based and data-efficient approach to policy search [C]// 28th International Conference on Machine Learning. Washington: Omnipress, 2011: 465-472.
|
19 |
张铁, 肖蒙, 邹焱飚, 等 基于强化学习的机器人曲面恒力跟踪研究[J]. 浙江大学学报: 工学版, 2019, 53 (10): 1865- 1873 ZHANG Tie, XIAO Meng, ZOU Yan-biao, et al Research on robot constant force control of surface tracking based on reinforcement learning[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (10): 1865- 1873
|
20 |
KINGMA D P, SALIMANS T, WELLING M. Variational dropout and the local reparameterization trick [EB/OL]. (2015-12-20)[2023-03-12]. https://arxiv.org/pdf/1506.02557.pdf.
|
21 |
JOSPIN L V, LAGA H, BOUSSAID F, et al Hands-on bayesian neural networks: a tutorial for deep learning users[J]. IEEE Computational Intelligence Magazine, 2022, 17 (2): 29- 48
doi: 10.1109/MCI.2022.3155327
|
22 |
KINGMA D P, WELLING M. Auto-encoding variational bayes [EB/OL]. (2022-12-11)[2023-03-12]. https://arxiv.org/pdf/1312.6114.pdf.
|
23 |
CHUA K, CALANDRA R, MCALLISTER R, et al. Deep reinforcement learning in a handful of trials using probabilistic dynamics models [EB/OL]. (2018-11-02)[2023-03-12]. https://arxiv.org/pdf/1805.12114.pdf.
|
24 |
QUIRYNEN R, VUKOV M, ZANON M, et al Autogenerating microsecond solvers for nonlinear MPC: a tutorial using ACADO integrators[J]. Optimal Control Applications and Methods, 2015, 36 (5): 685- 704
doi: 10.1002/oca.2152
|
25 |
HANSEN N. The CMA evolution strategy: a comparing review [M]// LOZANO J A, LARRAÑAGA P, INZA I, et al. Towards a new evolutionary computation. Berlin: Springer, 2006, 192: 75-102.
|
26 |
普亚松, 史耀耀, 蔺小军, 等 基于对数四元数的工业机器人Hermite样条曲线姿态插值[J]. 西北工业大学学报, 2019, 37 (6): 1165- 1173 PU Ya-song, SHI Yao-yao, LIN Xiao-jun, et al Interpolating industrial robot orientation with Hermite spline curve based on logarithmic quaternion[J]. Journal of Northwestern Polytechnical University, 2019, 37 (6): 1165- 1173
doi: 10.1051/jnwpu/20193761165
|
27 |
郭万金, 于苏扬, 赵伍端, 等 机器人主动柔顺恒力打磨控制方法[J]. 东北大学学报: 自然科学版, 2023, 44 (1): 89- 99 GUO Wan-jin, YU Su-yang, ZHAO Wu-duan, et al Grinding control method of robotic active compliance constant-force[J]. Journal of Northeastern University: Natural Science, 2023, 44 (1): 89- 99
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|