机械工程 |
|
|
|
|
基于深度强化学习的大口径轴孔装配策略 |
姜玉峰(),陈东生*() |
中国工程物理研究院 机械制造工艺研究所,四川 绵阳 621900 |
|
Assembly strategy for large-diameter peg-in-hole based on deep reinforcement learning |
Yu-feng JIANG(),Dong-sheng CHEN*() |
Institute of Mechanical Manufacturing Technology, China Academy of Engineering and Physics, Mianyang 621900, China |
1 |
孟明辉, 周传德, 陈礼彬, 等 工业机器人的研发及应用综述[J]. 上海交通大学学报, 2016, 50 (Suppl.1): 98- 101 MENG Ming-hui, ZHOU Chuan-de, CHEN Li-bin, et al A review of the research and development of industrial robots[J]. Journal of Shanghai Jiao Tong University, 2016, 50 (Suppl.1): 98- 101
doi: 10.16183/j.cnki.jsjtu.2016.S.025
|
2 |
CHERNYAKHOVSKAYA L B, SIMAKOV D A Peg-on-hole: mathematical investigation of motion of a peg and of forces of its interaction with a vertically fixed hole during their alignment with a three-point contact[J]. The International Journal of Advanced Manufacturing Technology, 2020, 170: 689- 704
|
3 |
吴炳龙, 曲道奎, 徐方 基于力/位混合控制的工业机器人精密轴孔装配[J]. 浙江大学学报: 工学版, 2018, 52 (2): 379- 386 WU Bing-long, QU Dao-kui, XU Fang Industrial robot high precision peg-in-hole assembly based on hybrid force/position control[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (2): 379- 386
|
4 |
ZHANG K, SHI M, XU J, et al Force control for a rigid dual peg-in-hole assembly[J]. Assembly Automation, 2017, 37 (2): 200- 207
doi: 10.1108/AA-09-2016-120
|
5 |
PAN G, JIA Q, CHEN G, et al A control method of space manipulator for peg-in-hole assembly task considering equivalent stiffness optimization[J]. Aerospace, 2021, 8 (10): 310
doi: 10.3390/aerospace8100310
|
6 |
BELTRAN-HERNANDEZ C C, Petit D, RAMIREZ-ALPIZAR I G, et al Variable compliance control for robotic peg-in-hole assembly: a deep-reinforcement-learning approach[J]. Applied Sciences, 2020, 10 (19): 6923
doi: 10.3390/app10196923
|
7 |
YANG C, ZENG C, CONG Y, et al A learning framework of adaptive manipulative skills from human to robot[J]. IEEE Transactions on Industrial Informatics, 2018, 15 (2): 1153- 1161
|
8 |
POLYDORDS A S, NALPANTIDIS L Survey of model-based reinforcement learning: applications on robotics[J]. Journal of Intelligent and Robotic Systems, 2017, 86 (2): 153- 173
doi: 10.1007/s10846-017-0468-y
|
9 |
KOBER J, BAGNELL J A, PETERS J Reinforcement learning in robotics: a survey[J]. The International Journal of Robotics Research, 2013, 32 (11): 1238- 1274
doi: 10.1177/0278364913495721
|
10 |
KIM D, LEE J, CHUNG W Y, et al Artificial intelligence-based optimal grasping control[J]. Sensors, 2020, 20 (21): 6390
doi: 10.3390/s20216390
|
11 |
MA Y, ZHU W, BENTON M G, et al Continuous control of a polymerization system with deep reinforcement learning[J]. Journal of Process Control, 2019, 75: 40- 47
doi: 10.1016/j.jprocont.2018.11.004
|
12 |
ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al Deep reinforcement learning: a brief survey[J]. IEEE Signal Processing Magazine, 2017, 34 (6): 26- 38
doi: 10.1109/MSP.2017.2743240
|
13 |
GARCIA J, FERNANDEZ F A comprehensive survey on safe reinforcement learning[J]. Journal of Machine Learning Research, 2015, 16 (1): 1437- 1480
|
14 |
KUMAR A, SHARMA R Linguistic Lyapunov reinforcement learning control for robotic manipulators[J]. Neurocomputing, 2018, 272: 84- 95
doi: 10.1016/j.neucom.2017.06.064
|
15 |
ZARANDI M H F, MOOSAVI S V, ZARINBAL M A fuzzy reinforcement learning algorithm for inventory control in supply chains[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65 (1): 557- 569
|
16 |
REN T, DONG Y, WU D, et al Learning-based variable compliance control for robotic assembly[J]. Journal of Mechanisms and Robotics, 2018, 10 (6): 061008
doi: 10.1115/1.4041331
|
17 |
XU J, HOU Z, WANG W, et al Feedback deep deterministic policy gradient with fuzzy reward for robotic multiple peg-in-hole assembly tasks[J]. IEEE Transactions on Industrial Informatics, 2018, 15 (3): 1658- 1667
|
18 |
ZHANG R, LV Q, LI J, et al A reinforcement learning method for human-robot collaboration in assembly tasks[J]. Robotics and Computer-Integrated Manufacturing, 2022, 73: 102227
doi: 10.1016/j.rcim.2021.102227
|
19 |
MA Y, XU D, QIN F Efficient insertion control for precision assembly based on demonstration learning and reinforcement learning[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (7): 4492- 4502
doi: 10.1109/TII.2020.3020065
|
20 |
HOU Z, LI Z, HSU C, et al Fuzzy logic-driven variable time-scale prediction-based reinforcement learning for robotic multiple peg-in-hole assembly[J]. IEEE Transactions on Automation Science and Engineering, 2020, 19 (1): 218- 229
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|