Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (9): 1876-1881    DOI: 10.3785/j.issn.1008-973X.2022.09.021
机械工程     
基于自抗干扰的装配机器人阻抗控制技术
张世玉(),陈东生*(),宋颖慧
中国工程物理研究院 机械制造工艺研究所,四川 绵阳 621900
Impedance control technology of assembly robot based on active disturbance rejection
Shi-yu ZHANG(),Dong-sheng CHEN*(),Ying-hui SONG
Institute of Mechanical Manufacturing Technology, China Academy of Engineering and Physics, Mianyang 621900, China
 全文: PDF(1406 KB)   HTML
摘要:

为了提升机器人装配作业的精确性和柔顺性,提出改进型自抗扰阻抗控制策略. 该策略通过自抗扰控制器生成新期望力来调整机器人末端工具坐标系的位置,实现精确的力跟踪. 通过扰动观测器观测环境信息并补偿控制系统的期望力,提高控制系统对环境参数的适应性. 引入阻抗模型改进扰动观测器,使观测器的响应速度增大,力跟踪的精度提高. 基于六自由度机器人的精密轴孔装配实验结果表明,与传统阻抗控制相比,基于自抗扰控制(ADRC)的阻抗控制能够在较小的接触力误差下完成装配,且基于改进型自抗扰控制的阻抗控制的力平均误差比改进前自抗扰控制减小12.0%~28.2%.

关键词: 轴孔装配柔顺装配阻抗控制自抗扰控制(ADRC)机器人    
Abstract:

An improved active disturbance rejection impedance control strategy was proposed, in order to improve the accuracy and flexibility of robot assembly operations. In this strategy, the new expected force was generated by the active disturbance rejection controller to adjust the position of the robot's end tool coordinate system, and achieve the accurate force tracking. The environmental information was observed by the disturbance observer and the expected force of the control system was compensated to improve the adaptability of the control system to environmental parameters. The impedance model was introduced to improve the disturbance observer, which increased the response speed of the observer and improved the precision of force tracking. The experimental results of precision peg-in-hole assembly based on 6-DOF robot showed that the impedance control based on active disturbance rejection control (ADRC) could complete the assembly with less contact force error to traditional impedance control, and the force average error of the impedance control based on improved ADRC was reduced by 12.0% to 28.2% compared with that before the improvement.

Key words: peg-in-hole assembly    compliant assembly    impedance control    active disturbance rejection control (ADRC)    robot
收稿日期: 2021-09-06 出版日期: 2022-09-28
CLC:  TP 242  
通讯作者: 陈东生     E-mail: 13980692301@163.com;13518311304@163.com
作者简介: 张世玉(1996—),男,硕士生,从事机器人装配研究. orcid.org/0000-0001-5989-7973. E-mail: 13980692301@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张世玉
陈东生
宋颖慧

引用本文:

张世玉,陈东生,宋颖慧. 基于自抗干扰的装配机器人阻抗控制技术[J]. 浙江大学学报(工学版), 2022, 56(9): 1876-1881.

Shi-yu ZHANG,Dong-sheng CHEN,Ying-hui SONG. Impedance control technology of assembly robot based on active disturbance rejection. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1876-1881.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.09.021        https://www.zjujournals.com/eng/CN/Y2022/V56/I9/1876

图 1  轴孔两点接触状态
图 2  自抗扰阻抗控制策略
图 3  改进型自抗扰阻抗控制策略
图 4  2种自抗扰控制下扩张状态观测器的状态观测误差
图 5  六轴工业机器人
图 6  轴孔试验件
方向 md bd kd
X、Y 5 100 0.1
Z 30 200 0.2
A、B 10 300 0.1
表 1  轴孔装配过程中3种算法在各方向的阻抗参数
图 7  装配过程中3种算法在各方向的力误差
算法 eAEF,X/N eAEF,Y/N eAEF,Z/N eAEF,A/(N·m) eAEF,B/(N·m)
阻抗 1.707 0.742 2.620 0.399 0.910
自抗扰阻抗 0.644 0.431 0.954 0.220 0.459
改进型自抗扰 0.563 0.315 0.649 0.158 0.404
表 2  装配过程中不同算法的接触力和力矩平均误差
1 孟明辉, 周传德, 陈礼彬, 等 工业机器人的研发及应用综述[J]. 上海交通大学学报, 2016, 50 (Suppl.1): 98- 101
MENG Ming-hui, ZHOU Chuan-de, CHEN Li-bin, et al A review of the research and development of industrial robots[J]. Journal of Shanghai Jiao Tong University, 2016, 50 (Suppl.1): 98- 101
doi: 10.16183/j.cnki.jsjtu.2016.S.025
2 CHERNYAKHOVSKAYA L B, SIMAKOV D A Peg-on-hole: mathematical investigation of motion of a peg and of forces of its interaction with a vertically fixed hole during their alignment with a three-point contact[J]. The International Journal of Advanced Manufacturing Technology, 2020, 170: 689- 704
3 吴炳龙, 曲道奎, 徐方 基于力/位混合控制的工业机器人精密轴孔装配[J]. 浙江大学学报:工学版, 2018, 52 (2): 379- 386
WU Bing-long, QU Dao-kui, XU Fang Industrial robot high precision peg-in-hole assembly based on hybrid force/position control[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (2): 379- 386
4 PARK H, PARK J, LEE D H, et al Compliant peg-in-hole assembly using partial spiral force trajectory with tilted peg posture[J]. IEEE Robotics and Automation Letters, 2020, 5 (3): 4447- 4454
doi: 10.1109/LRA.2020.3000428
5 HOGAN N . Impedance control: an approach to manipulation [C]// 1984 American Control Conference. San Diego: IEEE, 1984: 304-313.
6 张光辉, 王耀南 末端 F/T传感器的重力环境下大范围柔顺控制方法[J]. 智能系统学报, 2015, 10 (5): 675- 683
ZHANG Guang-hui, WANG Yao-nan A wide range compliance control method in gravity environment based on end force/ torque sensor[J]. CAAI Transactions on Intelligent Systems, 2015, 10 (5): 675- 683
7 DUAN J, GAN Y, CHEN M, et al Adaptive variable impedance control for dynamic contact force tracking in uncertain environment[J]. Robotics and Autonomous Systems, 2018, 102: 54- 65
doi: 10.1016/j.robot.2018.01.009
8 IZADBAKHSH A, KHORASHADIZADEH S Robust impedance control of robot manipulators using differential equations as universal approximator[J]. International Journal of Control, 2018, 91 (10): 2170- 2186
doi: 10.1080/00207179.2017.1336669
9 LI X, LIU Y H, YU H Iterative learning impedance control for rehabilitation robots driven by series elastic actuators[J]. Automatica, 2018, 90: 1- 7
doi: 10.1016/j.automatica.2017.12.031
10 ABU-DAKKA F J, LEONEL R, CALDWELL D G Force-based variable impedance learning for robotic manipulation[J]. Robotics and Autonomous Systems, 2018, 109: 156- 167
doi: 10.1016/j.robot.2018.07.008
11 ZHAO X, ZHAO H, CHEN P, et al Model accelerated reinforcement learning for high precision robotic assembly[J]. International Journal of Intelligent Robotics and Applications, 2020, 4: 202- 216
doi: 10.1007/s41315-020-00138-z
12 YE Y, CHEN C Y, LI P, et al. Cartesian admittance control with on-line gravity and friction observer compensation for elastic joint robots [C]// 2016 IEEE International Conference on Robotics and Biomimetics. Qingdao: IEEE, 2016: 725-730.
13 董悫, 张立建, 易旺民, 等 基于动力学前馈的空间机器人多销孔装配力柔顺控制[J]. 机械工程学报, 2019, 55 (4): 207- 217
DONG Que, ZHANG Li-jian, YI Wang-min, et al Force compliance control of multi-peg-in-hole assembling by space robot based on dynamic feedforward[J]. Journal of Mechanical Engineering, 2019, 55 (4): 207- 217
doi: 10.3901/JME.2019.04.207
14 潘立, 鲍官军, 胥芳, 等 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报:工学版, 2018, 52 (1): 125- 132
PAN Li, BAO Guan-jun, XU Fang, et al Dynamic compliant control of six DOF assembly robot[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (1): 125- 132
15 LI Z, HUANG Z, HE W, et al Adaptive impedance control for an upper limb robotic exoskeleton using biological signals[J]. IEEE Transactions on Industrial Electronics, 2016, 64 (2): 1664- 1674
16 高志强 自抗扰控制思想探究[J]. 控制理论与应用, 2013, 12 (30): 1499- 1510
GAO Zhi-qiang On the foundation of active disturbance rejection control[J]. Control Theory and Applications, 2013, 12 (30): 1499- 1510
doi: 10.7641/CTA.2013.31087
[1] 李勇,柳富强,孙柏青,张秋豪,杨俊友. 日常养老情境的异构多机器人动态多任务分配[J]. 浙江大学学报(工学版), 2022, 56(9): 1806-1814.
[2] 成宏达,骆海明,夏庆超,杨灿军. 基于改进γ-CLAHE算法的水下机器人图像识别[J]. 浙江大学学报(工学版), 2022, 56(8): 1648-1655.
[3] 许明,张帝,戎铖,苏礼荣,王万强. 基于Bouc-Wen修正模型的柔性关节驱动器迟滞建模[J]. 浙江大学学报(工学版), 2022, 56(8): 1560-1567, 1621.
[4] 李健,戴楚彦,王扬威,郭艳玲,查富生. 基于草莓轮廓曲线的单指软体采摘抓手设计与优化[J]. 浙江大学学报(工学版), 2022, 56(6): 1088-1096, 1134.
[5] 郭策,曾志文,朱鹏铭,周智千,卢惠民. 基于图卷积模仿学习的分布式群集控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1055-1061.
[6] 陈宏鑫,张北,王春香,杨明. 基于自适应随动机构的机器人目标跟随[J]. 浙江大学学报(工学版), 2022, 56(6): 1071-1078.
[7] 孙宝凤,张新康,李根道,刘娇娇. 第II类机器人混流装配线的平衡与排序联合决策[J]. 浙江大学学报(工学版), 2022, 56(6): 1097-1106.
[8] 李坤,李继华,李磊,卓越,潘博,付宜利. 四自由度微创手术器械的机构综合及运动学分析[J]. 浙江大学学报(工学版), 2022, 56(6): 1119-1126.
[9] 洪梦情,丁萌,顾秀涛,郭毓. 双臂空间机器人的固定时间轨迹跟踪控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1168-1174.
[10] 薛朝军,王海波,陈俞鹏. 推力吸附爬壁机器人的优化设计与试验[J]. 浙江大学学报(工学版), 2022, 56(6): 1181-1190, 1198.
[11] 王云灏,孙铭会,辛毅,张博宣. 基于压电薄膜传感器的机器人触觉识别系统[J]. 浙江大学学报(工学版), 2022, 56(4): 702-710.
[12] 支乐威,陈教料,王佳才,胥芳,张立彬. 基于参数优化的机器人花键装配偏角感知识别方法[J]. 浙江大学学报(工学版), 2022, 56(3): 452-461.
[13] 王砚麟,王克义,王奎成,莫宗骏,王璐莹. 仿肌肉绳索驱动下肢康复机器人系统使用安全性评价[J]. 浙江大学学报(工学版), 2022, 56(1): 168-177.
[14] 马浩然,丁雅斌. 基于双目视觉的激光位移传感器标定方法[J]. 浙江大学学报(工学版), 2021, 55(9): 1634-1642.
[15] 郝晏,丁雅斌,付津昇. 机器人加工系统累积误差逐级闭环优化策略[J]. 浙江大学学报(工学版), 2021, 55(6): 1142-1149.