Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (6): 1119-1126    DOI: 10.3785/j.issn.1008-973X.2022.06.008
智能机器人     
四自由度微创手术器械的机构综合及运动学分析
李坤1(),李继华1,李磊1,卓越1,潘博2,付宜利2
1. 山东建筑大学 机电工程学院,山东 济南 250101
2. 哈尔滨工业大学 机器人技术与系统国家重点实验室,黑龙江 哈尔滨 150080
Mechanism synthesis and kinematic analysis of 4-DOF minimally invasive surgical instrument
Kun LI1(),Ji-hua LI1,Lei LI1,Yue ZHUO1,Bo PAN2,Yi-li FU2
1. School of Mechanical and Electronic Engineering, Shandong Jianzhu University, Jinan 250101, China
2. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China
 全文: PDF(3970 KB)   HTML
摘要:

以夹持器为例,设计由伺服电机驱动和钢丝线轮传动的四自由度微创手术器械. 手术器械末端采用微型化设计,以适于远距离传动的钢丝驱动,改善手术器械在狭窄工作空间中的灵活度. 描述手术器械的构型原理和尺度设计,包括腕部、夹钳和器械轴;分析钢丝线轮传动机构的工作原理及腕部与夹钳的运动耦合. 研究手术器械的运动学特性,包括运动学正解、工作空间分析、速度雅克比变换和奇异性分析. 测试手术器械和驱动平台的原理样机表明,该器械能够满足微创手术相关技术操作的要求.

关键词: 微创手术机器人手术器械机构综合运动学分析器械样机    
Abstract:

Taking the grasper as an example, a 4-DOF minimally invasive surgical (MIS) instrument driven by servo motors and transmitted by cables was designed. Miniaturization design of the end of surgical instrument was driven by cables suitable for long distance transmission, which improved the dexterity of the surgical instrument working in narrow space. Mechanism principle and dimensional synthesis including the wrist, grasper and shaft rolling were described. Working principle of the cable-capstan transmission mechanism and kinematic coupling between the wrist and grasper were analyzed. Kinematic characteristic of the surgical instrument including forward kinematics, working space analysis, Jacobian transformation, and singularity analysis were described. A prototype of the surgical instrument and driving platform testing shows that the instrument prototype can be applied in most MIS operations.

Key words: minimally invasive surgical robot    surgical instrument    mechanism synthesis    kinematic analysis    instrument prototype
收稿日期: 2022-03-13 出版日期: 2022-06-30
CLC:  TP 242  
基金资助: 山东建筑大学博士科研基金资助项目(XNBS1619);山东省重点研发计划(公益类)资助项目(2019GGX104056)
作者简介: 李坤(1983—),男,副教授,博士,从事医疗机器人与人机共融研究. orcid.org/0000-0002-7863-8907. E-mail: likun@sdjzu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李坤
李继华
李磊
卓越
潘博
付宜利

引用本文:

李坤,李继华,李磊,卓越,潘博,付宜利. 四自由度微创手术器械的机构综合及运动学分析[J]. 浙江大学学报(工学版), 2022, 56(6): 1119-1126.

Kun LI,Ji-hua LI,Lei LI,Yue ZHUO,Bo PAN,Yi-li FU. Mechanism synthesis and kinematic analysis of 4-DOF minimally invasive surgical instrument. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1119-1126.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.008        https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1119

图 1  微创手术器械的操作方式
图 2  转动式腕部的机构示意图
图 3  转动式腕部的机构设计
图 4  腕部固定轮与腕部的装配关系
图 5  器械轴的横滚机构
图 6  器械轴的传动系统
图 7  手术器械末端的绕线图
图 8  腕部运动对夹钳的耦合运动图
图 9  手术器械机构原理图和关节坐标系
i ai-1 /(o) ai-1 /mm di /mm θi /(o)
1 0 0 0 θ1
2 90 0 0 θ2
3(3’) 90 a3 0 θ3 (θ3’)
tool 0 at 0 0
表 1  手术器械的改进D-H参数
图 10  手术器械的机构简图和工作空间
图 11  手术器械可操作性在工作空间中的分布
图 12  手术器械的原理样机
图 13  驱动平台的传动系统
图 14  驱动平台的原理样机
图 15  手术器械及驱动平台的整体装配
1 TONUTTI M, ELSON D S, YANG G Z, et al The role of technology in minimally invasive surgery: state of the art, recent developments and future directions[J]. Postgraduate Medical Journal, 2017, 93: 159- 167
doi: 10.1136/postgradmedj-2016-134311
2 GUERRA F, COLETTA D, BASSO C D, et al Conventional versus minimally invasive hartmann takedown: a meta-analysis of the literature[J]. World Journal of Surgery, 2019, 43: 1820- 1828
doi: 10.1007/s00268-019-04962-8
3 SU H, MARIANI A, OVUR S E, et al Toward teaching by demonstration for robot-assisted minimally invasive surgery[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18 (2): 484- 494
doi: 10.1109/TASE.2020.3045655
4 CACCIANIGA G, MARIANI A, MOMI E D, et al An evaluation of inanimate and virtual reality training for psychomotor skill development in robot-assisted minimally invasive surgery[J]. IEEE Transactions on Medical Robotics and Bionics, 2020, 2 (2): 118- 129
doi: 10.1109/TMRB.2020.2990692
5 ALI S, JONMOHAMADI Y, TAKEDA Y, et al Supervised scene illumination control in stereo arthroscopes for robot assisted minimally invasive surgery[J]. IEEE Sensors Journal, 2021, 21 (10): 11577- 11587
doi: 10.1109/JSEN.2020.3037301
6 WANG H B, WANG S X, ZUO S Y Development of visible manipulator with multi-gear array mechanism for laparoscopic surgery[J]. IEEE Robotics and Automation Letters, 2020, 5 (2): 3090- 3097
doi: 10.1109/LRA.2020.2975722
7 SUN Y W, PAN B, FU Y L Lightweight deep neural network for real-time instrument semantic segmentation in robot assisted minimally invasive surgery[J]. IEEE Robotics and Automation Letters, 2021, 6 (2): 3870- 3877
doi: 10.1109/LRA.2021.3066956
8 GUTHART G S. About intuitive: helping people get back to what matters most [EB/OL]. (2021-12-31)[2022-04-23]. https://www.intuitive.com/en-us/about-us/company.
9 MINOR M, MUKHERJEE R. A dexterous manipulator for minimally invasive surgery [C]// Proceedings of the IEEE International Conference on Robotics and Automation. Detroit: IEEE, 1999: 2057-2064.
10 ARATA J, MITSUISHI M, WARISAWA S, et al. Development of a dexterous minimally invasive surgical system with augumented force feedback capability [C]// Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton: IEEE, 2005: 3207-3212.
11 GUTHART G S, SALISBURY J K. The intuitiveTM telesurgery system: overview and application [C]// Proceedings of IEEE International Conference on Robotics and Automation. San Francisco: IEEE, 2000: 618-621.
12 李建民, 王树新, 张建勋, 等 微创手术机器人控制策略[J]. 天津大学学报, 2011, 44 (10): 884- 889
LI Jian-min, WANG Shu-xin, ZHANG Jian-xun, et al Control strategies of minimally invasive surgical robot[J]. Journal of Tianjin University, 2011, 44 (10): 884- 889
13 马如奇, 王志东, 董为, 等 一种新型机器人微创手术微器械的机构设计及运动学分析[J]. 机器人, 2013, 35 (4): 402- 409
MA Ru-qi, WANG Wei-dong, DONG Wei, et al Mechanism design and kinematics analysis of a micro instrument for robotic minimally invasive surgery[J]. Robot, 2013, 35 (4): 402- 409
doi: 10.3724/SP.J.1218.2013.00402
14 CHEN Y Y, WU B B, JIN J B, et al A variable curvature model for multi-backbone continuum robots to account for inter-segment coupling and external disturbance[J]. IEEE Robotics and Automation Letters, 2021, 6 (2): 1590- 1597
doi: 10.1109/LRA.2021.3058925
[1] 李伟达,王柱,张虹淼,李娟,顾洪. 床式步态康复训练系统机构设计[J]. 浙江大学学报(工学版), 2021, 55(5): 823-830.
[2] 李研彪,郑航,徐梦茹,罗怡沁,孙鹏. 5-PSS/UPU并联机构的多目标性能参数优化[J]. 浙江大学学报(工学版), 2019, 53(4): 654-663.
[3] 冯毅雄 程锦 谭建荣. 基于牛顿迭代混沌特性的机构综合新方法[J]. J4, 2008, 42(3): 369-372.