智能机器人 |
|
|
|
|
基于虚拟运动神经网络的六足机器人行为控制 |
朱雅光1,2(),刘春潮1,张亮1 |
1. 长安大学 道路施工技术与装备教育部重点实验室,陕西 西安 710064 2. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027 |
|
Behavior control of hexapod robot based on virtual motoneuron network |
Ya-guang ZHU1,2(),Chun-chao LIU1,Liang ZHANG1 |
1. Key Laboratory of Road Construction Technology and Equipment of MOE, Chang'an University, Xi'an 710064, China 2. State Key Laboratory of Fluid Power and Mechatronic Systems, Hangzhou 310027, China |
1 |
DELCOMYN F Insect walking and robotics[J]. Annual Review of Entomology, 2004, 49 (1): 51- 70
doi: 10.1146/annurev.ento.49.061802.123257
|
2 |
BAYRO-CORROCHANO E. Geometric algebra applications vol. II: robot modelling and control [M]. [S. l.]: Springer, 2020: 379-412.
|
3 |
AMROLLAH E, HENAFF P On the role of sensory feedbacks in Rowat–Selverston CPG to improve robot legged locomotion[J]. Frontiers in Neurorobotics, 2010, 4: 113
|
4 |
ROWAT P F, SELVERSTON A I Modeling the gastric mill central pattern generator of the lobster with a relaxation-oscillator network[J]. Journal of Neurophysiology, 1993, 70 (3): 1030- 1053
doi: 10.1152/jn.1993.70.3.1030
|
5 |
SCHILLING M, PASKARBEIT J, SCHMITZ J, et al. Grounding an internal body model of a hexapod walker control of curve walking in a biologically inspired robot [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve: IEEE, 2012: 2762-2768.
|
6 |
SARTORI M, YAVUZ U S, FARINA D In vivo neuromechanics: decoding causal motor neuron behavior with resulting musculoskeletal function[J]. Scientific Reports, 2017, 7 (1): 13465
doi: 10.1038/s41598-017-13766-6
|
7 |
FARINA D, VUJAKLIJA I, SARTORI M, et al Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle sreinnervation[J]. Nature Biomedical Engineering, 2017, 1: 25
doi: 10.1038/s41551-016-0025
|
8 |
WANG T, GUO W, ZHA F, et al. Research on a central pattern generator bionic coupling control system of robot [C]// IEEE International Conference on Information and Automation. Harbin: IEEE, 2010: 723-728.
|
9 |
MANOONPONG P, PARLITZ U, WÖRGÖTTER F Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines[J]. Frontiers in Neural Circuits, 2013, 7: 12- 40
|
10 |
STEINGRUBE S, TIMME M, WÖRGÖTTER F, et al Self-organized adaptation of a simple neural circuit enables complex robot behaviour[J]. Nature Physics, 2010, 6 (3): 224- 230
doi: 10.1038/nphys1508
|
11 |
XIONG X, WÖRGÖTTER F, MANOONPONG P Adaptive and energy efficient walking in a hexapod robot under neuromechanical control and sensorimotor learning[J]. IEEE Transactions on Cybernetics, 2015, 46 (11): 2521- 2534
|
12 |
DÜRR V, ARENA P P, CRUSE H, et al Integrative biomimetics of autonomous hexapedal locomotion[J]. Frontiers in Neurorobotics, 2019, 13: 88
|
13 |
WANG Y, XUE X, CHEN B Matsuoka’s CPG with desired rhythmic signals for adaptive walking of humanoid robots[J]. IEEE Transactions on Cybernetics, 2018, 50 (2): 613- 626
|
14 |
WANG T, GUO W, LI M, et al CPG control for biped hopping robot in unpredictable environment[J]. Journal of Bionic Engineering, 2012, 9 (1): 29- 38
doi: 10.1016/S1672-6529(11)60094-2
|
15 |
OWAKI D, GODA M, MIYAZAWA S, et al A minimal model describing hexapedal interlimb coordination: the tegotae-based approach[J]. Frontiers in Neurorobotics, 2017, 11: 29- 42
doi: 10.3389/fnbot.2017.00029
|
16 |
OWAKI D, ISHIGURO A A quadruped robot exhibiting spontaneous gait transitions from walking to trotting to galloping[J]. Scientific Reports, 2017, 7 (1): 277
doi: 10.1038/s41598-017-00348-9
|
17 |
SANTOS C P, ALVES N, MORENO J C Biped locomotion control through a biomimetic CPG-based controller[J]. Journal of Intelligent and Robotic Systems, 2017, 85 (1): 47- 70
doi: 10.1007/s10846-016-0407-3
|
18 |
SUZUKI S, KANO T, IJSPEERT A J, et al Sprawling quadruped robot driven by decentralized control with cross-coupled sensory feedback between legs and trunk[J]. Frontiers in Neurorobotics, 2021, 14: 116
|
19 |
ZHU Y G, ZHANG L, MANOONPONG P. Generic mechanism for waveform regulation and synchronization of oscillators: an application for robot behavior diversity generation [J/OL]. IEEE Transactions on Cybernetics, 2020:1–13. [2021-12-09]. https://ieeexplore.ieee.org/abstract/document/9254119.
|
20 |
ZHU Y G, ZHANG L, GUO W J, et al. A simple and flexible movement control method for a hexapod walking robot [C]// 22nd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines. Kuala Lumpur: [s. n.], 2019: 79-86.
|
21 |
ZHU Y G, ZHANG L, MANOONPONG P. Virtual motoneuron activation for goal-directed locomotion of a hexapod robot [C]// 2020 5th International Conference on Advanced Robotics and Mechatronics. Shenzhen: IEEE, 2020: 380-386.
|
22 |
ZHU Y G, WU Y S, LIU Q, et al A backward control based on σ-Hopf oscillator with decoupled parameters for smooth locomotion of bio-inspired legged robot[J]. Robotics and Autonomous Systems, 2018, 106: 165- 178
doi: 10.1016/j.robot.2018.05.009
|
23 |
ZHU Y G, ZHOU S J, GAO X D, et al Synchronization of non-linear oscillators for neurobiologically inspired control on a bionic parallel waist of legged robot[J]. Frontiers in Neurorobotics, 2019, 13: 59
doi: 10.3389/fnbot.2019.00059
|
24 |
DONG H, SANGOK S, JONGWOO L, et al High speed trot-running: implementation of a hierarchical controller using proprioceptive impedance control on the mit cheetah[J]. International Journal of Robotics Research, 2014, 33 (11): 1417- 1445
doi: 10.1177/0278364914532150
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|