Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (6): 1097-1106    DOI: 10.3785/j.issn.1008-973X.2022.06.006
智能机器人     
第II类机器人混流装配线的平衡与排序联合决策
孙宝凤1(),张新康1,李根道2,*(),刘娇娇1
1. 吉林大学 交通学院,吉林 长春 130022
2. 长春理工大学 经济管理学院,吉林 长春 130012
Joint decision-making of balancing and sequencing for type-II robotic mixed-model assembly line
Bao-feng SUN1(),Xin-kang ZHANG1,Gen-dao LI2,*(),Jiao-jiao LIU1
1. College of Transportation, Jilin University, Changchun 130022, China
2. School of Economics and Management, Changchun University of Science and Technology, Changchun 130012, China
 全文: PDF(1373 KB)   HTML
摘要:

为了提高第II类机器人混流装配线系统能效,界定工业机器人5种工作状态,量化不同状态下的机器人能源消耗值,引入关停策略和考虑产品切换,以最小化最大工作时间和能源消耗为目标,构建平衡与排序联合决策双目标优化模型. 设计改进的非支配排序遗传算法II,通过同类算法对比分析,验证改进算法的有效性. 结合算例,揭示关停策略和产品切换准备作业对机器人混流装配线系统的技术影响。关停策略能够减少能耗,在装配线平衡性下降时的效果愈加明显,最大能耗节约率达到16.68%;考虑产品切换准备作业的影响,有利于机器人混流装配线作业效率和能源消耗的整体优化.

关键词: 机器人混流装配线系统能源消耗关停策略产品切换平衡与排序优化改进的分支配排序遗传算法II    
Abstract:

In order to optimize the energy and efficiency of the type-II robotic mixed-model assembly line system, firstly, five working states of industrial robots was defined to measure the robot energy consumption in state. A dual-objective optimization model of joint decision-making of balancing and sequencing was proposed in consideration of shutdown strategies and product switching. Its objectives were taken as minimizing the maximum working time and energy consumption. Next, the improved non-dominated sorting genetic algorithm II (NSGA-II) was designed and its validation was also verified by comparing with a similarly algorithm. Finally, the technical impact of shutdown strategy and product switching on the robotic mixed-model assembly line system was shown by example analysis. The shutdown strategy was able to bring energy savings to a certain extent, and the benefits become more obvious when the balance of the assembly line decreases, and the maximum energy saving rate reached 16.68%; the product switching in consideration was beneficial both to the operation efficiency and energy efficiency for the robotic mixed-model assembly line.

Key words: type-II robotic mixed-model assembly line system    energy consumption    shutdown strategy    product switching    balancing and sequencing optimization    improved non-dominated sorting genetic algorithm II
收稿日期: 2021-09-12 出版日期: 2022-06-30
CLC:  TP 278  
基金资助: 国家自然科学基金资助项目(61873109);吉林省自然科学基金资助项目(20210101055JC);一汽股份技术创新资助项目(KF2020-20006)
通讯作者: 李根道     E-mail: sunbf@jlu.edu.cn;gendaoli@cust.edu.cn
作者简介: 孙宝凤(1970—),女,教授,博士,从事智能物流系统规划与设计研究. orcid.org/0000-0002-9030-5523,E-mail: sunbf@jlu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
孙宝凤
张新康
李根道
刘娇娇

引用本文:

孙宝凤,张新康,李根道,刘娇娇. 第II类机器人混流装配线的平衡与排序联合决策[J]. 浙江大学学报(工学版), 2022, 56(6): 1097-1106.

Bao-feng SUN,Xin-kang ZHANG,Gen-dao LI,Jiao-jiao LIU. Joint decision-making of balancing and sequencing for type-II robotic mixed-model assembly line. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1097-1106.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.006        https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1097

图 1  综合装配顺序图
图 2  工序排序向量、分配向量和工作站的关系
图 3  编码向量与解码结果
图 4  基于FRC的工序排序向量交叉
图 5  基于OX的机器人分配、MPS产品投产顺序向量交叉
图 6  工序排序向量的变异
图 7  工序排序向量的邻域搜索
$ \eta $ $ N $ $ D $ $ M $ $ H $
1 19 3 3 1,1,1
2 19 3 3 3,2,1
3 19 3 4 1,1,1
4 19 3 4 3,2,1
5 61 4 5 1,1,1,1
6 61 4 5 1,3,4,5
7 61 4 7 1,1,1,1
8 61 4 7 1,3,4,5
9 61 4 10 1,1,1,1
10 61 4 10 1,3,4,5
11 111 5 9 1,1,1,1,1
12 111 5 9 1,2,4,5,8
13 111 5 9 5,3,2,1,1
14 111 5 9 1,4,8,3,1
15 111 5 13 1,1,1,1,1
16 111 5 13 1,2,4,5,8
17 111 5 13 5,3,2,1,1
18 111 5 13 1,4,8,3,1
19 111 5 15 1,1,1,1,1
20 111 5 15 1,2,4,5,8
表 1  基准算例数据表(部分)
水平 $ {s_{\text{p}}} $ $ {n_{\max }} $ $ {p_{\text{c}}} $ $ {p_{\text{m}}} $
1 0.04 0.45 0.22 1.09
2 0.49 0.74 0.69 0.65
3 0.20 0.80 0.78 0.25
4 1.76 0.51 0.80 0.51
$ {R_{\text{V}}} $极差 1.72 0.36 0.58 0.85
$ {R_{\text{V}}} $等级 1.00 4.00 3.00 2.00
表 2  响应变量均值和显著性等级排序
$\eta $ $ \overline {{N_{\text{m}}}} $ $ \overline C $ $ \overline S $ $ \overline T /s $
HPSA NSGA-II (HPSA, NSGA-II) (NSGA-II, HPSA) HPSA NSGA-II HPSA NSGA-II
1 13.50 13.20 0.46 0.37 0.25 0.27 46.29 19.09
2 7.40 3.70 0.56 0.29 1.41 1.53 53.09 26.87
3 3.20 2.90 0.63 0.19 0.24 0.03 42.51 26.23
4 14.80 13.70 0.51 0.30 1.24 0.56 42.32 27.56
5 11.20 15.80 0.23 0.42 3.72 3.54 90.45 48.91
6 45.00 55.80 0.17 0.59 12.85 9.35 89.65 47.45
7 35.30 54.40 0.21 0.56 3.62 2.99 98.87 47.19
8 31.80 61.40 0.13 0.65 12.01 11.15 99.74 48.34
9 15.60 15.10 0.28 0.44 2.90 5.99 118.65 57.62
10 23.80 29.00 0.20 0.45 16.84 15.62 119.83 56.50
11 32.90 50.40 0.21 0.58 10.99 6.51 205.42 119.77
12 31.70 63.90 0.10 0.55 39.93 27.88 186.05 123.80
13 39.10 76.10 0.13 0.63 26.95 16.22 183.14 120.85
14 34.50 79.50 0.12 0.57 30.55 18.55 184.47 122.53
15 22.40 21.60 0.24 0.34 10.79 8.69 196.36 130.17
16 24.80 42.60 0.15 0.58 38.35 27.07 202.19 130.60
17 27.20 34.80 0.07 0.67 21.25 18.09 199.51 127.65
18 25.60 53.50 0.15 0.65 32.87 25.56 202.00 129.96
19 18.70 22.30 0.16 0.43 8.75 11.78 202.06 132.87
20 21.50 42.50 0.25 0.45 44.03 35.24 211.06 133.63
表 3  基准算例下NSGA-II、HPSA性能指标均值
图 8  基准算例下算法求得的平均非支配解数量
图 9  基准算例下算法的平均覆盖率
图 10  基准算例下算法的平均空间分布
图 11  基准算例下算法的平均运行时间
图 12  有无关停策略的Pareto解的分布
图 13  有无关停策略的能耗节约率对比
P A 方案1 方案2 $ R $/%
F 1 F 2 F 1 F 2 F 1 F 2
1 20.30 141.53 16.68 131.67 17.83 6.97
2 16.72 131.61 17.63 7.01
3 16.90 131.38 16.74 7.17
4 16.92 130.81 16.64 7.57
5 17.05 130.22 16.00 7.99
平均值 20.30 141.53 16.86 131.14 16.97 7.34
表 4  有无产品切换的能效优化对比
1 LEVITIN G, RUBINOVITZ J, SHNITS B A genetic algorithm for robotic assembly line balancing[J]. European Journal of Operational Research, 2006, 168 (3): 811- 825
doi: 10.1016/j.ejor.2004.07.030
2 ABD K K, ABHARY K, MARIAN R M. Development of an intelligent approach to dynamic scheduling in robotic flexible assembly cells [M]// NUNES E, TELHADA J, CARVALHO M. IAENG transactions on engineering sciences. [S.l.]: CRC Press, 2014: 203-214.
3 International Federation of Robotics. World robotics 2020 report [R/OL]. (2020-09-24) [2021-09-12]. https://ifr.org/ifr-press-releases/news/record-2.7-million-robots-work-in-factories-around-the-globe.
4 LI Z X, TANG Q H, ZHANG L P Minimizing energy consumption and cycle time in two-sided robotic assembly line systems using restarted simulated annealing algorithm[J]. Journal of Cleaner Production, 2016, 135: 508- 522
doi: 10.1016/j.jclepro.2016.06.131
5 RUBINOVITZ J, BUKCHIN J. Design and balancing of robotic assembly lines [C]// Proceedings of the fourth world conference on robotics research. Pittsburgh: [s. n.], 1991: 1-10.
6 GAO J, SUN L Y, WANG L H, et al An efficient approach for type II robotic assembly line balancing problems[J]. Computers and industrial engineering, 2009, 56 (3): 1065- 1080
doi: 10.1016/j.cie.2008.09.027
7 YOOSEFELAHI A, AMINNAYERI M, MOSADEGH H, et al Type II robotic assembly line balancing problem: an evolution strategies algorithm[J]. Journal of Manufacturing Systems, 2012, 31 (2): 139- 151
doi: 10.1016/j.jmsy.2011.10.002
8 CIL Z A, METE S, AGPAK K Analysis of the type II robotic mixed-model assembly line balancing problem[J]. Engineering Optimization, 2017, 49 (6): 990- 1009
doi: 10.1080/0305215X.2016.1230208
9 RABBANI M, MOUSAVI Z, FARROKHI-ASL H Multi-objective metaheuristics for solving a type II robotic mixed-model assembly line balancing problem[J]. Journal of Industrial and Production Engineering, 2016, 33 (7): 472- 484
doi: 10.1080/21681015.2015.1126656
10 ZHANG Z K, TANG Q H, LI Z X, et al Modelling and optimization of energy-efficient U-shaped robotic assembly line balancing problems[J]. International Journal of Production Research, 2019, 57 (7): 5520- 5537
11 ZHANG Z K, TANG Q H, ZHANG L P Mathematical model and grey wolf optimization for low-carbon and low-noise U-shaped robotic assembly line balancing problem[J]. Journal of Cleaner Production, 2019, 215: 744- 756
doi: 10.1016/j.jclepro.2019.01.030
12 ZHANG B K, XU L Y, ZHANG J Balancing and sequencing problem of mixed-model U-shaped robotic assembly line: mathematical model and dragonfly algorithm based approach[J]. Applied Soft Computing, 2021, 98: 106739
doi: 10.1016/j.asoc.2020.106739
13 NILAKANTAN J M, LI Z X, TANG Q H, et al Multi-objective cooperative co-evolutionary algorithm for minimizing carbon footprint and maximizing line efficiency in robotic assembly line systems[J]. Journal of Cleaner Production, 2017, 156: 124- 136
doi: 10.1016/j.jclepro.2017.04.032
14 周炳海, 康雪云 考虑能效的多机器人协同装配线平衡方法[J]. 北京理工大学学报, 2019, 39 (3): 276- 282
ZHOU Bing-hai, KANG Xue-yun Multi-robot cooperative assembly line balancing method based on energy efficiency[J]. Transactions of Beijing Institute of Technology, 2019, 39 (3): 276- 282
15 NILAKANTAN J M, HUANG G Q, PONNAMBALAM S G An investigation on minimizing cycle time and total energy consumption in robotic assembly line systems[J]. Journal of Cleaner Product, 2015, 90: 311- 325
doi: 10.1016/j.jclepro.2014.11.041
16 ZHANG B K, XU L Y, ZHANG J A multi-objective cellular genetic algorithm for energy-oriented balancing and sequencing problem of mixed-model assembly line[J]. Journal of Cleaner Production, 2020, 244: 118845
doi: 10.1016/j.jclepro.2019.118845
17 MOUZON G, YILDIRIM M B A framework to minimize total energy consumption and total tardiness on a single machine[J]. International Journal of Sustainable Engineering, 2008, 1 (2): 105- 116
doi: 10.1080/19397030802257236
18 谢素芬 基于PROFINET的节能技术PROFIenergy——节能技术新趋势[J]. 仪器仪表标准化与计量, 2010, (6): 36- 39
XIE Su-fen Energy-saving technology PROFIenergy based on PROFINET new trend of energy-saving technology[J]. Instrumentation Standardization and Metrology, 2010, (6): 36- 39
doi: 10.3969/j.issn.1672-5611.2010.06.011
19 SCHOLL A. Balancing and Sequencing of Assembly Lines [M]. Heidelberg: Springer-Verlag, 1999.
20 LI Z X, JANARDHANAN M N, TANG Q H, et al Mathematical model and metaheuristics for simultaneous balancing and sequencing of a robotic mixed-model assembly line[J]. Engineering Optimization, 2018, 50 (5): 877- 893
doi: 10.1080/0305215X.2017.1351963
21 RUBINOVITZ J, LEVITIN G Genetic algorithm for assembly line balancing[J]. International Journal of Production Economics, 1995, 41 (1/3): 343- 354
22 DAVIS L. Applying adaptive algorithms to epistatic domains [EB/OL]. [2021-09-12]. https://www.ijcai.org/Proceedings/85-1/Papers/029.pdf.
23 KIM Y K, KIM S J, KIM J Y. Mixed model line balancing and scheduling [DS/OL]. [2021-09-12]. https://assembly-line-balancing.de/further-data-sets/mixed-model-line-balancing-and-scheuduling/
24 MONTGOMERY D C. Design and analysis of experiments [M]. 9th ed. New York: Wiley, 2017.
25 ZITZLER E, THIELE L Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3 (4): 257- 271
doi: 10.1109/4235.797969
[1] 刘爱军, 杨育, 李斐, 邢青松, 陆惠, 张煜东. 混沌模拟退火粒子群优化算法研究及应用[J]. J4, 2013, 47(10): 1722-1730.
[2] 徐姗姗, 董利达, 朱丹, 朱承丞. S4PR网的极小信标计算方法[J]. J4, 2013, 47(3): 431-441.
[3] 张建明, 谢磊, 毛婧敏, 董方. 基于离散量子微粒群优化的作业车间调度[J]. J4, 2012, 46(5): 842-847.
[4] 叶建芳, 潘晓弘, 王正肖, 等. 基于免疫离散粒子群算法的调度属性选择[J]. J4, 2009, 43(12): 2203-2207.
[5] 田景红, 潘晓弘, 王正肖. 基于频繁模式挖掘的实时供应链数据分析[J]. J4, 2009, 43(12): 2259-2263.