能源工程、机械工程 |
|
|
|
|
基于观测器摩擦补偿的机电系统高精度控制 |
李曦( ),胡健*( ),姚建勇,魏科鹏,王鹏飞,邢浩晨 |
南京理工大学 机械工程学院,江苏 南京 210094 |
|
High precision control of electromechanical system based on observer friction compensation |
Xi LI( ),Jian HU*( ),Jian-yong YAO,Ke-peng WEI,Peng-fei WANG,Hao-chen XING |
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China |
引用本文:
李曦,胡健,姚建勇,魏科鹏,王鹏飞,邢浩晨. 基于观测器摩擦补偿的机电系统高精度控制[J]. 浙江大学学报(工学版), 2021, 55(6): 1150-1158.
Xi LI,Jian HU,Jian-yong YAO,Ke-peng WEI,Peng-fei WANG,Hao-chen XING. High precision control of electromechanical system based on observer friction compensation. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1150-1158.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.06.016
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I6/1150
|
1 |
QI W, GENG L, YONG Z, et al Numerical and experimental investigation on electromechanical aileron actuation system with joint clearance[J]. Journal of Mechanical Science and Technology, 2019, 33 (2): 525- 535
doi: 10.1007/s12206-019-0105-8
|
2 |
XI X, SI X, XIA W, et al Research on improved control method of electromechanical actuation[J]. The Journal of Engineering, 2018, 2018 (13): 631- 635
doi: 10.1049/joe.2018.0045
|
3 |
申健, 刘从灵, 冮庆庸 小型飞机起落架收放机电作动器研究与开发[J]. 科技风, 2018, (24): 89 SHEN Jian, LIU Cong-ling, YOU Qing-yong Research and development of electromechanical actuators for retracting and landing small aircraft landing gears[J]. Sci-Tech Wind, 2018, (24): 89
|
4 |
YERLIKAYA Ü, BALKAN T. Increasing the bandwidth frequency by Coulomb friction compensation method in electromechanical control actuation systems[C]// IEEE/ASME Advanced Intelligent Mechatronics. [S. l.]: IEEE, 2019.
|
5 |
HUANG Jian, ZHANG Xin-hua, WANG Guan, et al. Adaptive friction compensation of electromechanical servo system based on LuGre model[C]// IEEE Conference on Industrial Electronics and Applications. [S. l.]: IEEE, 2018: 2596-2600.
|
6 |
曹文祺, 李少远 具有可参数化不确定性系统的对偶自适应模型预测控制[J]. 控制理论与应用, 2019, 36 (8): 1197- 1206 CAO Wen-qi, LI Shao-yuan Dual adaptive model predictive control with parametric uncertainty system[J]. Control Theory and Applications, 2019, 36 (8): 1197- 1206
doi: 10.7641/CTA.2018.80324
|
7 |
钟震宇, 谢远龙, 周广兵, 等 伺服驱动系统无模型自适应控制[J]. 湖南科技大学学报: 自然科学版, 2019, 34 (1): 85- 93 ZHONG Zhen-yu, XIE Yuan-long, ZHOU Guang-bing, et al Model-free adaptive control of servo drive system[J]. Journal of Hunan University of Science and Technology: Natural Science Edition, 2019, 34 (1): 85- 93
|
8 |
TAHEREH B, MAHSA K, ALI R T Robust control approach for handling matched and/or unmatched uncertainties in port-controlled Hamiltonian systems[J]. IET Cyber-systems and Robotics, 2019, 1 (3): 73- 80
doi: 10.1049/iet-csr.2019.0019
|
9 |
YAO J, JIAO Z, MA D Adaptive robust control of DC motors with extended state observer[J]. IEEE Transactions on Industrial Electronics, 2014, 61 (7): 3630- 3637
doi: 10.1109/TIE.2013.2281165
|
10 |
JIAN H, YANG Q, LONG L High-order sliding-mode observer based output feedback adaptive robust control of a launching platform with backstepping[J]. International Journal of Control, 2016, 89 (10): 2029- 2039
doi: 10.1080/00207179.2016.1147604
|
11 |
YAO J, DENG W, JIAO Z Adaptive control of hydraulic actuators with LuGre model-based friction compensation[J]. Transactions on Industrial Electronics, 2015, 62 (10): 6469- 6477
doi: 10.1109/TIE.2015.2423660
|
12 |
邓文翔, 马吴宁, 姚建勇 机电伺服系统鲁棒自适应重复控制[J]. 上海交通大学学报, 2016, 50 (9): 1486- 1492 DENG Wen-xiang, MA Wu-ning, YAO Jian-yong Robust adaptive repetitive control of electromechanical servo systems[J]. Journal of Shanghai Jiaotong University, 2016, 50 (9): 1486- 1492
|
13 |
王元刚. 发射装置伺服系统的摩擦补偿及高精度控制策略研究[D]. 南京: 南京理工大学, 2018. WANG Yuan-gang. Research on friction compensation and high-precision control strategy of launcher servo system[D]. Nanjing: Nanjing University of Science and Technology, 2018.
|
14 |
BISOFFI A, BEERENS R, HEEMELS W, et al To stick or to slip: a reset PID control perspective on positioning systems with friction[J]. Annual Reviews in Control, 2020, 20 (49): 37- 63
|
15 |
王慧, 姜守岭 数字液压缸反馈螺杆库伦摩擦仿真研究[J]. 控制工程, 2020, 27 (4): 662- 668 WANG Hui, JIANG Shou-ling Coulomb friction simulation study on feedback screw of digital hydraulic cylinder[J]. Control Engineering, 2020, 27 (4): 662- 668
|
16 |
FELLIPE G M, CLAUDIO G Stribeck parameters estimation of a diaphragm valve using quasi Newton method[J]. IFAC Papers on Line, 2019, 52 (1): 225- 230
doi: 10.1016/j.ifacol.2019.06.066
|
17 |
FENG H, QIAO W, YIN C, et al Identification and compensation of non-linear friction for a electro-hydraulic system[J]. Mechanism and Machine Theory, 2019, 19 (141): 1- 13
|
18 |
TOBIAS P T, IGNATIUS P N, INDRAWANTO I, et al Stable PID control strategy to remove limit cycle due to Stribeck friction on DC servo motor[J]. International Review of Automatic Control, 2018, 11 (4): 208
doi: 10.15866/ireaco.v11i4.14883
|
19 |
武柏安, 回学文, 龙海洋, 等 磁流变阻尼器Dahl模型的参数化建模[J]. 内燃机与配件, 2020, 306 (6): 104- 105 WU Bai-an, HUI Xue-wen, LONG Hai-yang, et al Parametric modeling of the Dahl model of magnetorheological dampers[J]. Internal Combustion Engine and Parts, 2020, 306 (6): 104- 105
doi: 10.3969/j.issn.1674-957X.2020.06.051
|
20 |
FAY A I, VICTOR M O, GISELA P Minor loops of the Dahl and LuGre models[J]. Applied Mathematical Modeling, 2020, (77): 1679- 1690
|
21 |
SIMONI L, BESCHI M, VISIOLI A, et al Inclusion of the dwell time effect in the LuGre friction model[J]. Mechatronics, 2019, 66 (2): 1016- 1023
|
22 |
殷婷婷, 贾方秀, 于纪言, 等 基于改进LuGre摩擦模型的双旋弹丸固定舵翼滚转位置鲁棒自适应控制算法[J]. 兵工学报, 2019, 40 (12): 2425- 2432 YIN Ting-ting, JIA Fang-xiu, YU Ji-yan, et al Robust adaptive control algorithm for rolling position of fixed rudder wing of double-rotating projectile based on improved LuGre friction model[J]. Journal of Ordnance Engineering, 2019, 40 (12): 2425- 2432
doi: 10.3969/j.issn.1000-1093.2019.12.005
|
23 |
HU J, WANG Y, LIU L, et al High-accuracy robust adaptive motion control of a torque-controlled motor servo system with friction compensation based on neural network[J]. Proceedings of the Institution of Mechanical Engineers, 2018, 233 (7): 203- 210
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|