Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (5): 925-933    DOI: 10.3785/j.issn.1008-973X.2018.05.012
机械与能源工程     
复合材料成形液压机自适应鲁棒运动控制
魏建华, 孙春耕, 方锦辉, 王刚
浙江大学 流体动力与机电系统国家重点实验室, 浙江 杭州 310027
Adaptive robust motion control of composite material hydraulic press
WEI Jian-hua, SUN Chun-geng, FANG Jin-hui, WANG Gang
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1740 KB)   HTML
摘要:

针对复合材料液压机电液系统中广泛存在的参数不确定性、不确定非线性和外干扰,设计基于非连续映射的非线性自适应鲁棒运动控制器. 自适应控制器对系统参数进行在线估计,所估计的参数虽不能完全收敛到真实值,但可以限定在上确界和下确界范围内,满足鲁棒控制不确定量上、下界的要求;参数自适应律渐进消除了参数不确定性引起的模型补偿误差,保证输出跟踪可以拥有规定的瞬态和稳态响应性能. 鲁棒控制律可以抑制未建模动态、参数估计误差和外干扰的影响. 利用Lyapunov稳定性理论证明了系统的稳定性. 仿真和实验结果表明,设计的控制器对所规划的运动轨迹具有精确的跟踪控制和强鲁棒的控制性能.

Abstract:

A discontinuous projection-based nonlinear adaptive robust motion controller was constructed in order to deal with the parametric uncertainties, uncertain nonlinearity and external disturbance existed in the electro-hydraulic system of a composite material hydraulic press. The adaptive controller estimated system parameters online. Although the estimated parameters cannot completely converge to their true values, they can be kept within the upper and lower bounds, which meets the requirements of robust control. The model compensation error caused by the parametric uncertainties can be gradually eliminated by the adaptive law. The guaranteed transient and steady state response performance of output tracking was achieved. The effects of unmodeled dynamics, parameter estimation errors, and external disturbances were suppressed by the robust control law. The stability of the electro-hydraulic control system was proved based on the Lyapunov theory. Both simulation and experimental results show that the proposed controller provides a high-accuracy tracking and robust performance for the desired trajectory.

收稿日期: 2017-05-09 出版日期: 2018-11-07
CLC:  TH137  
基金资助:

国家“863”高技术研究发展计划资助项目(2012AA041804);中国科技部国家科技支撑计划资助项目(2015BAF07B06).

通讯作者: 方锦辉,男,讲师.orcid.org/0000-0003-4371-2609.     E-mail: jhfang@zju.edu.cn
作者简介: 魏建华(1965-),男,教授,博导.从事电液控制理论及工程应用等研究.orcid.org/0000-0003-1150-8216.E-mail:jhwei@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

魏建华, 孙春耕, 方锦辉, 王刚. 复合材料成形液压机自适应鲁棒运动控制[J]. 浙江大学学报(工学版), 2018, 52(5): 925-933.

WEI Jian-hua, SUN Chun-geng, FANG Jin-hui, WANG Gang. Adaptive robust motion control of composite material hydraulic press. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 925-933.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.05.012        http://www.zjujournals.com/eng/CN/Y2018/V52/I5/925

[1] 俞新陆.液压机的设计与应用[M].北京:机械工业出版社,2007.
[2] MERRITT H E. Hydraulic control systems[M]. New York:John Wiley & Sons, 1967.
[3] YAO B, JIANG C. Advanced motion control:From classical PID to nonlinear adaptive robust control[C]//IEEE International Workshop on Advanced Motion Control. Nagaoka, Niigata:IEEE, 2010:815-829.
[4] 王伟,张晶涛,柴天佑.PID参数先进整定方法综述[J].自动化学报,2000,26(3):347-355. WANG Wei, ZHANG Jing-tao, CAI Tian-you. A survey of advanced pid parameter tuning methods[J]. Acta Automatica Sinica, 2000, 26(3):347-355.
[5] LEE Y H,KOPP R. Application of fuzzy control for a hydraulic forging machine[J]. Fuzzy Sets & Systems, 2001, 118(1):99-108.
[6] ZHENG Jian-ming, ZHAO Sheng-dun, WEI Shu-guo. Fuzzy iterative learning control of electro-hydraulic servo system for SRM direct-drive volume control hydraulic press[J]. Journal of Central South University of Technology, 2010, 17(2):316-322.
[7] 彭雄斌,龚国芳,陈馈,等.管片拼装机提升缸模糊PID同步控制[J].浙江大学学报:工学版,2014,48(11):2002-2008. PENG Xiong-bin, GONG Guo-fang, CHEN Kui, et al. Synchronization fuzzy PID control of lifting hydraulic cylinders for segment erector[J]. Journal of Zhejiang University:Engineering Science, 2014, 48(11):2002-2008.
[8] 吴洪波,王记,赵修平.基于遗传算法和Vague集的液压位置控制系统自适应PID控制[J].海军航空工程学院学报,2013(4):372-377. WU Hong-bo, WANG Ji, ZHAO Xiu-ping. Adaptive PID control of hydraulic position control system based on genetic algorithm and vague sets[J]. Journal of Naval Aeronautical and Astronautical University, 2013(4):372-377.
[9] CHEN H M, RENN J C, SU J P. Sliding mode control with varying boundary layers for an electro-hydraulic position servo system[J]. The International Journal of Advanced Manufacturing Technology, 2005, 26(1):117-123.
[10] FUNG R F, WANG Y C, YANG R, et al. A variable structure control with proportional and integral compensations for electrohydraulic position servo control system[J]. Mechatronics, 1997, 7(1):67-81.
[11] SUN Z, TSAO T C. Adaptive control with asymptotic tracking performance and its application to an electro-hydraulic servo system[J]. Universidad Complutense De Madrid, 2000, 122(1):478-485.
[12] MINTSA H A, KENNE J P, VENUGOPAL R. Adaptive control of an electrohydraulic position servo system[C]//AFRICON, 2009. Nairobi, Kenya:IEEE, 2009:1-6.
[13] URSU I, URSU F, POPESCU F. Backstepping design for controlling electrohydraulic servos[J]. Journal of the Franklin Institute, 2006, 343(1):94-110.
[14] 郭洪波,李洪人.基于Backstepping的阀控非对称缸电液伺服系统非线性控制[J].液压与气动,2004(10):38-40. GUO Hong-bo, LI Hong-ren. Backstepping-based nonlinear control for asymmetric cylinder electro-hydraulic servo system[J]. Chinese Hydraulics & Pneumatics, 2004(10):38-40.
[15] GUAN C, PAN S X. Nonlinear adaptive robust control of single-rod electro-hydraulic actuator with unknown nonlinear parameters[J]. IEEE Transactions on Control Systems Technology, 2008, 16(3):434-445.
[16] AHN K K, NAM D N C, JIN M. Adaptive Backstepping control of an electrohydraulic actuator[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(19):987-995.
[17] YAO B, BU F P, REEDY J, et al. Adaptive robust motion control of single-rod hydraulic actuators:theory and experiments[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(1):79-91.
[18] YAO B, BU F, CHIU T C. Nonlinear adaptive robust control of electro-hydraulic servo systems with discontinuous projections[C]//Decision and Control, 1998. Proceedings of the 37th IEEE Conference on. Tampa, FL:IEEE, 1998:2265-2270 vol.2.
[19] 冯瑞琳,魏建华.粉末成形液压机自适应鲁棒运动控制[J].农业机械学报,2015,46(8):352-360. FENG Rui-lin, WEI Jian-hua. Adaptive robust motion control of powder compaction press[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(8):352-360.
[20] ZHANG Q, FANG J H, WEI J H, et al. Adaptive robust motion control of a fast forging hydraulic press considering the nonlinear uncertain accumulator model[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2016, 230(6):483-497.
[21] GUO K, WEI J H. Adaptive robust control of variable displacement pumps[C]//American Control Conference. Washington, DC:IEEE, 2013, 45:1112-1117.
[22] XIONG Y, WEI J H, FENG R L. Adaptive robust control of a high-response dual proportional solenoid valve with flow force compensation[J]. Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering, 2015, 229(1):3-26.
[23] 孟德远,陶国良,李艾民,等.高速开关阀控气动位置伺服系统的自适应鲁棒控制[J].机械工程学报,2015,51(10):180-188. MENG Deng-yuan, TAO Guo-liang, LI Ai-min,et al. Adaptive robust control of pneumatic cylinders using fast switching on/off solenoid valves[J]. Journal of Mechanical Engineering, 2015, 51(10):180-188.
[24] 杜春燕,吴爱国,贾超,等.基于反步递推法的锻造液压机速度控制[C]//中国控制会议.北京:2010:5666-5669. DU Chun-yan, WU Ai-guo, JIA Chao, et al. Speed control of hydraulic press based on backstepping method[C]//Control Conference. Beijing:IEEE, 2010:5666-5669.

[1] 黄梓亮, 欧阳小平, 赵天菲, 张建波, 周亮, 杨华勇. 飞机液压含气量检测系统特性[J]. 浙江大学学报(工学版), 2019, 53(1): 158-165.
[2] 王超, 龚国芳, 杨华勇, 周建军, 段理文, 张亚坤. NSVR硬岩隧道掘进机刀盘扭矩预测分析[J]. 浙江大学学报(工学版), 2018, 52(3): 479-486.
[3] 钟麒, 张斌, 洪昊岑, 杨华勇. 基于电流反馈的高速开关阀3电压激励控制策略[J]. 浙江大学学报(工学版), 2018, 52(1): 8-15.
[4] 孙伟, 杜家楠, 王林涛, 马宏辉. 盾构管片拼装机电液系统高速-低冲击控制方法[J]. 浙江大学学报(工学版), 2017, 51(10): 1948-1958.
[5] 郭凡, 魏建华, 张强, 熊义. 基于级联控制器的液压机位移/压力复合控制[J]. 浙江大学学报(工学版), 2017, 51(10): 1937-1947.
[6] 师建鹏, 权龙, 张晓刚, 熊晓燕. 进出口独立复合控制挖掘机的动臂速度位置特性[J]. 浙江大学学报(工学版), 2017, 51(9): 1797-1807.
[7] 欧阳小平, 刘玉龙, 薛志全, 郭生荣, 周清和, 杨华勇. null[J]. 浙江大学学报(工学版), 2017, 51(7): 1361-1367.
[8] 任好玲, 谢海波, 杨华勇, 等. 单组元液压自由活塞发动机关键技术[J]. J4, 2009, 43(5): 872-876.