Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (10): 1937-1947    DOI: 10.3785/j.issn.1008-973X.2017.10.007
机械与能源工程     
基于级联控制器的液压机位移/压力复合控制
郭凡1, 魏建华1, 张强1, 熊义2
1. 浙江大学 流体动力与机电系统国家重点实验室, 浙江 杭州 310027;
2. 南通锻压设备股份有限公司, 江苏 南通 226578
Hybrid position/pressure control of hydraulic press based on cascade controller
GUO Fan1, WEI Jian-hua1, ZHANG Qiang1, XIONG Yi2
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China;
2. Nantong Metalforming Equipment Limited Company, Nantong 226578, China
 全文: PDF(2384 KB)   HTML
摘要:

针对液压机的电液系统控制难题,提出非线性级联控制器,对液压机在慢速加压阶段的位移、压力进行复合控制.为了克服系统参数不确定性对压力控制带来的显著影响,该非线性级联控制器的压力控制环采用扰动观测器对油液体积弹性模量、伺服比例阀流量增益、液压缸泄漏系数等参数的不确定性所产生的集中扰动进行在线估计及补偿,利用无源性定理证明了压力控制环的稳定性;考虑到系统参数不确定性及各种外干扰对滑块位移控制带来的不利影响,该非线性级联控制器的位移控制环基于滑模控制而设计;位移控制和压力控制的切换取决于当前位移.实验结果表明,该非线性级联控制器能够使得液压机在慢速加压阶段实现高精度、平稳的位移控制及压力控制,可以实现这两者之间的平稳切换.

Abstract:

A nonlinear cascade controller was proposed to control the position and pressure during the slow compression stage in view of the control problems faced in the electrohydraulic systems of hydraulic press. The pressure control loop of the nonlinear cascade controller adopted a disturbance observer to estimate and compensate for the lumped disturbance on-line in order to overcome the significant influence of the system parametric uncertainties on the pressure control performance. The lumped disturbance on-line was caused by the parametric uncertainties associated with the bulk modulus of the oil, flow gain of the servo-proportional valve, leakage coefficient of the hydraulic cylinder, and so on. The stability of the pressure control loop was proved using the passivity theorem. The position control loop of the nonlinear cascade controller was designed based on the sliding mode control considering the negative influence of the system parametric uncertainties and various external disturbances on the position control performance. The switch between the position control and the pressure control was depended on current position. The experimental results demonstrate that the proposed nonlinear cascade controller can make the hydraulic press achieve high-precision and smooth position control and pressure control during the slow compression stage, and make the switch between the position control and pressure control smooth.

收稿日期: 2016-09-02 出版日期: 2017-09-27
CLC:  TH137  
基金资助:

国家自然科学基金资助项目(51075359);国家“863”高技术研究发展计划资助项目(2012AA041801).

通讯作者: 魏建华,男,教授,博导.ORCID:0000-0003-1150-8216.     E-mail: jhwei@zju.edu.cn
作者简介: 郭凡(1986-),男,博士生,从事大型装备电液控制系统的研究.ORCID:0000-0001-9302-5052.E-mail:guofan_ZD@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

郭凡, 魏建华, 张强, 熊义. 基于级联控制器的液压机位移/压力复合控制[J]. 浙江大学学报(工学版), 2017, 51(10): 1937-1947.

GUO Fan, WEI Jian-hua, ZHANG Qiang, XIONG Yi. Hybrid position/pressure control of hydraulic press based on cascade controller. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 1937-1947.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.10.007        http://www.zjujournals.com/eng/CN/Y2017/V51/I10/1937

[1] 李贵闪,翟华. 电液比例控制技术在液压机中的应用[J].锻压装备与制造技术,2005,40(6):28-30. LI Gui-shan, ZHAI Hua. Application of electro-hydro proportional control in hydraulic press[J]. China Metal Forming Equipment and Manufacturing Technology, 2005, 40(6):28-30.
[2] 李贵闪,翟华. 液压机液压系统比例压力控制方法探讨[J].机床与液压,2011,39(16):67-68. LI Gui-shan, ZHAI Hua. Discussion on methods of proportional pressure control in hydraulic system of hydraulic press[J]. Machine Tool and Hydraulics, 2011,39(16):67-68.
[3] TRUONG D Q, AHN K K. Force control for press machines using an online smart tuning fuzzy PID based on a robust extended Kalman filter[J]. Expert Systems with Applications, 2011, 38(5):5879-5894.
[4] ZHANG Q, WEI J H, FANG J H, et al. High performance pressure control for the hydraulic press based on the soft relief fuzzy PID controller[C]//ASME/BATH 2015 Symposium on Fluid Power and Motion Control. Chicago:ASME, 2015.
[5] AYALEW B, JABLOKOW K W. Partial feedback linearising force-tracking control:implementation and testing in electrohydraulic actuation[J]. IET Control Theory and Applications, 2007, 1(3):689-698.
[6] SANADA K. A method of designing a robust force controller of a water-hydraulic servo system[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2002, 216(2):135-141.
[7] ZHU W H, PIEDBOEUF J C. Adaptive output force tracking control of hydraulic cylinders with applications to robot manipulators[J]. Journal of Dynamic Systems, Measurement and Control, 2005, 127(2):206-217.
[8] 林治平. 锻压变形力的工程计算[M].北京:机械工业出版社,1986.
[9] LEI J, LU X J, LI Y B, et al. Approximate-model based estimation method for dynamic response of forging processes[J]. Chinese Journal of Mechanical Engineering (English Edition), 2015, 28(3):565-572.
[10] LU X J, LI H X, DUAN J A, et al. Integrated design and control under uncertainty:a fuzzy modeling approach[J]. Industrial and Engineering Chemistry Research, 2010, 49(3):1312-1324.
[11] LU X J, LI Y B, HUANG M H. Operation-region-decomposition-based singular value decomposition/neural network modeling method for complex hydraulic press machines[J]. Industrial and Engineering Chemistry Research, 2013, 52(48):17221-17228.
[12] LU X J, FAN B, HUANG M H. A novel LS-SVM modeling method for a hydraulic press forging process with multiple localized solutions[J]. IEEE Transactions onIndustrial Informatics, 2015, 11(3):663-670.
[13] ZHANG Q, WEI J H, FANG J H, et al. Nonlinear motion control of the hydraulic press based on an extended piecewise disturbance observer[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2016, 230(8):830-850.
[14] CHEN W H. Disturbance observer based control for nonlinear systems[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(4):706-710.
[15] YAO J, LI B, KONG X D, et al. Displacement and dual-pressure compound control for fast forginghydraulic system[J]. Journal of Mechanical Science and Technology, 2016, 30(1):353-363.
[16] ZHENG J M, ZHAO S D, WEI S G. Application of self-tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press[J]. Control Engineering Practice, 2009, 17(12):1398-1404.
[17] FANG Y, YANG J, CHAI X D. Hybrid control of hydraulic press machine based on robust control[J]. Chinese Journal of Mechanical Engineering (English Edition), 2008, 21(2):72-76.
[18] KADDISSI C, KENNE J P, SAAD M. Indirect adaptive control of an electrohydraulic servo system based on nonlinear backstepping[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(6):1171-1177.
[19] ZHANG Q, FANG J H, WEI J H, et al. Adaptive robust motion control of a fast forging hydraulic press considering the nonlinear uncertain accumulator model[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2016, 230(6):483-497.
[20] KIM W, SHIN D, WON D, et al. Disturbance-observer-based position tracking controller in the presence of biased sinusoidal disturbance for electrohydraulic actuators[J]. IEEE Transactions on Control Systems Technology, 2013, 21(6):2290-2298.
[21] 哈里尔. 非线性系统[M].朱义胜,董辉,李作洲,等,译. 3版. 北京:电子工业出版社,2011.
[22] YAO B, BU F P, REEDY J, et al. Adaptive robust motion control of single-rod hydraulic actuators:theory and experiments[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(1):79-91.

[1] 黄梓亮, 欧阳小平, 赵天菲, 张建波, 周亮, 杨华勇. 飞机液压含气量检测系统特性[J]. 浙江大学学报(工学版), 2019, 53(1): 158-165.
[2] 魏建华, 孙春耕, 方锦辉, 王刚. 复合材料成形液压机自适应鲁棒运动控制[J]. 浙江大学学报(工学版), 2018, 52(5): 925-933.
[3] 王超, 龚国芳, 杨华勇, 周建军, 段理文, 张亚坤. NSVR硬岩隧道掘进机刀盘扭矩预测分析[J]. 浙江大学学报(工学版), 2018, 52(3): 479-486.
[4] 钟麒, 张斌, 洪昊岑, 杨华勇. 基于电流反馈的高速开关阀3电压激励控制策略[J]. 浙江大学学报(工学版), 2018, 52(1): 8-15.
[5] 孙伟, 杜家楠, 王林涛, 马宏辉. 盾构管片拼装机电液系统高速-低冲击控制方法[J]. 浙江大学学报(工学版), 2017, 51(10): 1948-1958.
[6] 师建鹏, 权龙, 张晓刚, 熊晓燕. 进出口独立复合控制挖掘机的动臂速度位置特性[J]. 浙江大学学报(工学版), 2017, 51(9): 1797-1807.
[7] 欧阳小平, 刘玉龙, 薛志全, 郭生荣, 周清和, 杨华勇. null[J]. 浙江大学学报(工学版), 2017, 51(7): 1361-1367.
[8] 任好玲, 谢海波, 杨华勇, 等. 单组元液压自由活塞发动机关键技术[J]. J4, 2009, 43(5): 872-876.