Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (3): 485-493    DOI: 10.3785/j.issn.1008-973X.2022.03.007
计算机与控制工程     
基于数据驱动的鲁棒反步自适应巡航控制
宋家成1(),闫茂德1,*(),杨盼盼1,巨永锋1,岳靖斐2
1. 长安大学 电子与控制工程学院,陕西 西安 710064
2. 陕西汽车控股集团有限公司,陕西 西安 710200
Robust backstepping adaptive cruise control based on data-driven
Jia-cheng SONG1(),Mao-de YAN1,*(),Pan-pan YANG1,Yong-feng JU1,Jing-fei YUE2
1. School of Electronic and Control Engineering, Chang’an University, Xi’an 710064, China
2. Shaanxi Automobile Holding Group Limited Company, Xi’an 710200, China
 全文: PDF(1433 KB)   HTML
摘要:

为了实现高精度的鲁棒自适应巡航控制(ACC),提出基于数据驱动的鲁棒反步自适应巡航控制算法. 利用反步技术设计虚拟控制器,将车辆间距控制转化为速度控制,避免速度相关型间距策略带来的间距与速度控制耦合;构建基于数据的耦合滑模面并设计状态观测器,补偿车辆复杂的非线性动力学特性、离散误差及外部干扰,提升控制算法的鲁棒性;利用反馈控制及鲁棒控制技术设计数据驱动的ACC鲁棒控制算法;分别选取固定时间间距、变时间间距策略,利用所提ACC算法及基于比例积分(PI)的ACC算法进行车辆自适应巡航控制对比仿真验证. 对比实验结果表明,所提算法在控制精度、鲁棒性方面具有优越性.

关键词: 自适应巡航控制数据驱动鲁棒控制反步控制间距策略    
Abstract:

A data-driven robust backstepping adaptive cruise control (ACC) algorithm was proposed to achieve high-precision robust ACC. First of all, a virtual controller was designed to convert the vehicle spacing control into speed control by using the backstepping technology, avoiding the coupling of speed and spacing control brought by the speed-dependent spacing strategy. Secondly, a data-based coupling sliding mode surface and state observer were constructed to compensate for the vehicle’s complex nonlinear dynamics, the discrete errors and the external disturbances, and the robustness of the control algorithm was improved. Then, a data-driven robust ACC algorithm was designed using feedback control and robust control techniques. Finally, the proposed ACC algorithm and the PI-based ACC were used for vehicle adaptive cruise tracking simulation verification with two spacing strategies (constant time headway and varying time headway). The superiority of the designed algorithm in terms of control accuracy and robustness are shown by the experimental results.

Key words: adaptive cruise control (ACC)    data-driven    robust control    backstepping control    spacing strategy
收稿日期: 2021-04-12 出版日期: 2022-03-29
CLC:  U 46  
基金资助: 国家自然科学基金资助项目(61803040);陕西省重点研发计划资助项目(2019GY-218);中央高校基本科研业务费资助项目(300102320720)
通讯作者: 闫茂德     E-mail: jiacheng.song@chd.edu.cn;mdyan@chd.edu.cn
作者简介: 宋家成(1993—),男,博士生,从事智能网联车辆控制研究. orcid.org/0000-0003-3183-123X. E-mail: jiacheng.song@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
宋家成
闫茂德
杨盼盼
巨永锋
岳靖斐

引用本文:

宋家成,闫茂德,杨盼盼,巨永锋,岳靖斐. 基于数据驱动的鲁棒反步自适应巡航控制[J]. 浙江大学学报(工学版), 2022, 56(3): 485-493.

Jia-cheng SONG,Mao-de YAN,Pan-pan YANG,Yong-feng JU,Jing-fei YUE. Robust backstepping adaptive cruise control based on data-driven. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 485-493.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.03.007        https://www.zjujournals.com/eng/CN/Y2022/V56/I3/485

图 1  领航车辆的时间–速度–位置轨迹图
参数 数值 参数 数值
$ m/{\text{kg}} $ 1250+250 sin (t) $ {\rho _{\text{a}}}/\left( {{\text{N}} \cdot {{\text{s}}^{\text{2}}} \cdot {{\text{m}}^{ - 4}}} \right) $ 1.225 8
$ {A_{\text{f}}}/{{\text{m}}^2} $ 2.2 $ {\gamma \mathord{\left/{\vphantom {\gamma {^ \circ }}} \right.} ({^ \circ })} $ 5
$ {c_{\text{r}}} $ 0.018+0.002 sin (t) $ \delta $ 1
$ {c_{\text{f}}} $ 0.35+0.05 sin (t) $ g/\left( {{\text{m·}}{{\text{s}}^{-2}}} \right) $ 9.8
表 1  车辆模型基本参数
图 2  固定时间间距策略下的仿真结果
图 3  时变时间间距策略下的仿真结果
算法 CTH VTH
$ {e_{80}}/{\rm{m}} $ $\Delta \bar v/({\rm{m \cdot {s^{ - 1}}} })$ $\Delta \bar a/({\rm{m \cdot {s^{ - 2}}}) }$ $ {e_{80}}/{\rm{m}} $ $\Delta \bar v/({\rm{m \cdot {s^{ - 1} }})}$ $\Delta \bar a/({\rm{m \cdot {s^{ - 2}}}) }$
PI 0.2 3.076 9 0.106 7 0.25 3.076 9 0.294 7
本研究
0.015 3.076 9 0.068 4 0.06 3.076 8 0.293 1
表 2  控制跟踪误差、速度变化率及加速度变化率
图 4  采样时间为0.1时固定时间间距策略下的仿真结果
图 5  采样时间为0.1时变时间间距策略下的仿真结果
图 6  车辆切入工况下的仿真结果
图 7  目标车辆驶离工况下的仿真结果
1 吴光强, 张亮修, 刘兆勇, 等 汽车自适应巡航控制系统研究现状与发展趋势[J]. 同济大学学报:自然科学版, 2017, 45 (4): 544- 553
WU Guang-qiang, ZHANG Liang-xiu, LIU Zhao-yong, et al Research status and development trend of vehicle adaptive cruise control systems[J]. Journal of Tongji University: Natural Science, 2017, 45 (4): 544- 553
2 秦严严, 王昊, 王炜, 等 自适应巡航控制车辆跟驰模型综述[J]. 交通运输工程学报, 2017, 17 (3): 121- 130
QIN Yan-yan, WANG Hao, WANG Wei, et al Review of car-following models of adaptive cruise control[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (3): 121- 130
doi: 10.3969/j.issn.1671-1637.2017.03.013
3 黄晶, 韦伟, 邹德飚 基于个性化间距策略的自适应巡航系统模式切换策略研究[J]. 汽车工程, 2020, 42 (10): 1302- 1311
HUANG Jing, WEI Wei, ZOU De-biao Research on multi-mode switching strategy of adaptive cruise control system based on personalized spacing strategy[J]. Automotive Engineering, 2020, 42 (10): 1302- 1311
4 初亮, 李天骄, 孙成伟 面向再生制动优化的电动车自适应巡航控制策略[J]. 浙江大学学报:工学版, 2017, 51 (8): 1596- 1602
CHU Liang, LI Tian-jiao, SUN Cheng-wei Research on adaptive cruise control strategy for electric vehicle based on optimization of regenerative braking[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (8): 1596- 1602
5 罗莉华, 龚李龙, 李平, 等 考虑驾驶员行驶特性的双模式自适应巡航控制设计[J]. 浙江大学学报:工学版, 2011, 45 (12): 2073- 2078
LUO Li-hua, GONG Li-long, LI Ping, et al Two-mode adaptive cruise control design with humans’ driving habits consideration[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (12): 2073- 2078
6 IOANNOU P A, CHIEN C C Autonomous intelligent cruise control[J]. IEEE Transactions on Vehicular Technology, 1993, 42 (4): 657- 672
doi: 10.1109/25.260745
7 YAN M D, SONG J C, YANG P P, et al. Distributed adaptive sliding mode control for vehicle platoon with uncertain driving resistance [C]// 2017 36th Chinese Control Conference (CCC). Dalian: IEEE, 2017: 9396-9400.
8 孙天骏. 基于学习控制的汽车全速自适应巡航决策与控制算法研究[D]. 长春: 吉林大学, 2020: 12.
SUN Tian-jun. Research on decision and control algorithm for vehicle full-speed adaptive cruise based on learning control [D]. Changchun: Jilin University, 2020: 12.
9 MILANES V, VILLAGRA J, GODOY J, et al Comparing fuzzy and intelligent PI controllers in stop-and-go manoeuvres[J]. IEEE Transactions on Control Systems Technology, 2012, 20 (3): 770- 778
doi: 10.1109/TCST.2011.2135859
10 GANJI B, KOUZANI A Z, SUI Y K, et al Adaptive cruise control of a HEV using sliding mode control[J]. Expert Systems with Application, 2014, 41 (2): 607- 615
doi: 10.1016/j.eswa.2013.07.085
11 KIM H, YI K Design of a model reference cruise control algorithm[J]. SAE International Journal of Passenger Cars-Electronic and Electrical Systems, 2012, 5 (2): 440- 449
doi: 10.4271/2012-01-0492
12 王斌, 王仁广, 何玮, 等 汽车ACC系统可变输出论域模糊控制算法[J]. 计算机应用研究, 2010, 27 (2): 465- 465
WANG Bin, WANG Guang-ren, HE Wei, et al Fuzzy control algorithm on variable output domain in automotive ACC system[J]. Application research of computers, 2010, 27 (2): 465- 465
doi: 10.3969/j.issn.1001-3695.2010.02.016
13 施绍有, 高峰, 杜发荣, 等 起-停车辆巡航系统的建模与仿真[J]. 中国公路学报, 2007, 20 (3): 115- 120
SHI Shao-you, GAO Feng, DU Fa-rong, et al Modeling and simulation of stop-and-go vehicle cruise system[J]. China Journal of Highway and Transport, 2007, 20 (3): 115- 120
doi: 10.3321/j.issn:1001-7372.2007.03.021
14 李升波, 王建强, 李克强, 等 MPC实用化问题处理及在车辆ACC中的应用[J]. 清华大学学报:自然科学版, 2010, 50 (5): 645- 648
LI Sheng-bo, WANG Jian-qiang, LI Ke-qiang, et al Processing of MPC practical problems and its application to vehicular adaptive cruise control systems[J]. Journal of Tsinghua University: Science and Technology, 2010, 50 (5): 645- 648
15 郭戈, 岳伟. 智能交通系统中的车辆协作控制[M]. 北京: 机械工业出版社, 2016: 1.
16 LIDSTR?M K, SJ?BERG K, H?LMBERG U, et al A modular CACC system integration and design[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (3): 1050- 1061
doi: 10.1109/TITS.2012.2204877
17 NIEUWENHUIJZE M, KEULEN T V, ONCU S, et al Cooperative driving with a heavy-duty truck in mixed traffic: experimental results[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (3): 1026- 1032
doi: 10.1109/TITS.2012.2202230
18 LEVENT G, ISMAIL M C U, KERIM K, et al Cooperative adaptive cruise control implementation of Team Mekar at the grand cooperative driving challenge[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 12 (3): 1062- 1074
19 FURDA A, VLACIC L Enabling safe autonomous driving in real-world city traffic using multiple criteria decision making[J]. IEEE Intelligent Transportation Systems Magazine, 2011, 3 (1): 4- 17
doi: 10.1109/MITS.2011.940472
20 CHONG L, ABBAS M M, MEDINA F A, et al A rule-based neural network approach to model driver naturalistic behavior in traffic[J]. Transportation Research Part C, 2013, 32 (4): 207- 223
21 郑睿. 基于增强学习的无人车辆智能决策方法研究[D]. 长沙: 国防科学技术大学, 2013: 1-3.
ZHENG Rui. Reinforcement learning-based intelligent decision-making methods for unmanned vehicles [D]. Changsha: National University of Defense Technology, 2013: 1-3.
22 严伟. 仿驾驶员速度跟随行为的自适应巡航控制算法研究[D]. 长春: 吉林大学, 2016: 34.
YAN Wei. Study on adaptive cruise control algorithms imitating car-following behaviors of drivers [D]. Changchun: Jilin University, 2016: 34.
[1] 李曦,胡健,姚建勇,魏科鹏,王鹏飞,邢浩晨. 基于观测器摩擦补偿的机电系统高精度控制[J]. 浙江大学学报(工学版), 2021, 55(6): 1150-1158.
[2] 雷驰,吴萌岭. 基于反步法的列车制动缸压力精确控制[J]. 浙江大学学报(工学版), 2021, 55(3): 462-471.
[3] 孔祥玉,王晓兵,李红增,罗家宇. 面向工业平稳/非平稳复杂系统的在线故障监测技术[J]. 浙江大学学报(工学版), 2021, 55(10): 1856-1866.
[4] 蔡畅,黄亦翔,邢宏文. 基于梯度提升树的飞机机身对接状态识别[J]. 浙江大学学报(工学版), 2019, 53(7): 1274-1281.
[5] 袁海辉,葛一敏,甘春标. 不确定性扰动下双足机器人动态步行的自适应鲁棒控制[J]. 浙江大学学报(工学版), 2019, 53(11): 2049-2057.
[6] 张燕,王建宙,李威,王婕,陈玲玲,杨鹏. 基于数据驱动的膝关节外骨骼控制[J]. 浙江大学学报(工学版), 2019, 53(10): 2024-2033.
[7] 魏建华, 孙春耕, 方锦辉, 王刚. 复合材料成形液压机自适应鲁棒运动控制[J]. 浙江大学学报(工学版), 2018, 52(5): 925-933.
[8] 王尧尧, 顾临怡, 陈柏, 吴洪涛. 水下机器人-机械手系统非奇异终端滑模控制[J]. 浙江大学学报(工学版), 2018, 52(5): 934-942.
[9] 陶国良, 周超超, 尚策. 气动位置伺服嵌入式控制器及控制策略[J]. 浙江大学学报(工学版), 2017, 51(4): 792-799.
[10] 熊义,魏建华,冯瑞琳,张强. 基于全局任务坐标系的二轴电液系统轮廓控制[J]. 浙江大学学报(工学版), 2015, 49(11): 2063-2072.
[11] 宋筱轩,冯天恒,黄平捷,侯迪波,张光新. 基于动态数据驱动的突发水污染事故仿真方法[J]. 浙江大学学报(工学版), 2015, 49(1): 63-68.
[12] 贺乃宝, 高倩, 徐启华, 姜长生. 基于自适应观测器的飞行器抗干扰控制[J]. J4, 2013, 47(4): 650-655.
[13] 阎博,江道灼,甘德强,藏玉清. 基于反馈线性化H∞方法的UPFC非线性鲁棒控制器[J]. J4, 2012, 46(11): 1975-1980.
[14] 王会方, 朱世强, 吴文祥. 谐波驱动伺服系统的改进自适应鲁棒控制[J]. J4, 2012, 46(10): 1757-1763.
[15] 罗莉华, 龚李龙, 李平, 王慧. 考虑驾驶员行驶特性的双模式自适应
巡航控制设计
[J]. J4, 2011, 45(12): 2073-2078.