Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (3): 462-471    DOI: 10.3785/j.issn.1008-973X.2021.03.006
土木与交通工程     
基于反步法的列车制动缸压力精确控制
雷驰(),吴萌岭
同济大学 铁道与城市轨道交通研究院,上海 201804
Backstepping based precise control of brake cylinder pressure for train
Chi LEI(),Meng-ling WU
Institute of Rail Transit, Tongji University, Shanghai 201804, China
 全文: PDF(1546 KB)   HTML
摘要:

针对重载列车电控空气(ECP)制动系统,提出基于反步法的制动缸压力精确控制方法. 通过等效连续化处理和线性化处理,建立具有严格反馈方式的ECP制动系统控制模型;引入已知上界的不确定项,采用指数趋近律的滑模变结构,实现系统局部鲁棒性;基于反步法设计控制律,构造误差变量以及 Lyapunov函数;引入一阶滤波器,解决控制律中存在的“微分项数爆炸”问题. 硬件在环试验结果表明:与传统控制器相比,基于反步法的制动缸压力控制器具有更高的控制精度,其稳态控制误差在±8 kPa内,且调压过程无明显超调;在控制器中引入控制死区,可以大幅降低AV/RV阀的动作次数,提高系统使用寿命.

关键词: 电控空气制动系统等效连续化反步控制器精确控制压力    
Abstract:

A precise control method of brake cylinder pressure based on backstepping was proposed for the heavy-haul train equipped with electronically controlled pneumatic (ECP) brake system. A control model of ECP brake system with strict feedback form was established through equivalent continuous processing and linearization. By introducing the uncertainties with known upper bound, and adopting the sliding mode variable structure with exponential approach law, the local robustness of the system was achieved. A control law based on backstepping was designed by constructing error variables and Lyapunov function. A first-order filter was introduced to solve the problem of counting the derivative repeatedly in the control law. The performance of the controller was analyzed through hardware-in-loop test. Test results showed that, comparing with the traditional controller, the controller of brake cylinder pressure based on backstepping had a higher control accuracy, and its steady state control error was within the range of ±8 kPa without obviously overshoot in the pressure regulation process. In addition, the introduction of dead zone in the controller can significantly reduce the operation times of the AV/RV valve and improve the service life of the system.

Key words: electronically controlled pneumatic brake system    equivalent continuous processing    backstepping controller    precise control    pressure
收稿日期: 2020-02-26 出版日期: 2021-04-25
CLC:  U 270.35  
作者简介: 雷驰(1991—),男,博士生,从事轨道车辆制动与安全技术研究. orcid.org/0000-0002-9072-8198.E-mail: wnleichi2009@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
雷驰
吴萌岭

引用本文:

雷驰,吴萌岭. 基于反步法的列车制动缸压力精确控制[J]. 浙江大学学报(工学版), 2021, 55(3): 462-471.

Chi LEI,Meng-ling WU. Backstepping based precise control of brake cylinder pressure for train. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 462-471.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.03.006        http://www.zjujournals.com/eng/CN/Y2021/V55/I3/462

图 1  ECP制动系统简化模型
图 2  3种控制方法下的电磁阀平均位移特性
图 3  制动缸压力控制器设计流程图
图 4  ECP制动系统硬件在环(HIL)试验台示意图
类别 tdo/ms tmo/ms tdc/ms tmc/ms d/ms xm/ms Cq2
AV阀 8 7 1 2 6 0.3 0.68
RV阀 5 6 2 4 10 0.25 0.6
表 1  AV/RV电磁阀特性参数
参数 符号 数值
不确定项上界 B1B2 0.5
误差变量自适应参数初值 σ10σ20 1×10?8,1×10?9
自适应变化率 ρ1ρ2 1×10?11
边界层厚度 ε 0.02
一阶滤波器 λ 0.005
表 2  基于反步法的制动缸压力控制器参数
图 5  制动系统阶跃响应
图 6  阶跃响应下反步控制器输出的占空比信号
图 7  制动系统频率响应(f=0.02 Hz)
图 9  频率响应下反步控制器输出的占空比信号
图 8  制动系统频率响应(f=0.05 Hz)
图 10  带控制死区的制动缸压力响应特性
图 11  带有控制死区的PWM信号占空比
1 马大炜, 王成国, 张波 我国重载列车制动技术的研究[J]. 铁道车辆, 2009, 47 (5): 8- 11
MA Da-wei, WANG Cheng-guo, ZHANG Bo Research on braking technology for heavy haul trains in our country[J]. Rolling Stock, 2009, 47 (5): 8- 11
doi: 10.3969/j.issn.1002-7602.2009.05.002
2 SITUM Z, NOVAKOVIC B Servo pneumatic position control using fuzzy logic PID gain scheduling[J]. Journal of Dynamic Systems, Measurement and Control, 2004, 127 (2): 376- 387
doi: 10.1115/1.1767857
3 KARPENKO M, SEPEHRI N Development and experimental evaluation of a fixed-gain nonlinear control for a low-cost pneumatic actuator[J]. IEEE Proceedings of Control Theory and Applications, 2006, 153 (6): 629- 640
doi: 10.1049/ip-cta:20045084
4 KARPENKO M, SEPEHRI N. QFT synthesis of a position controller for a pneumatic actuator in the presence of worst-case persistent disturbances [C]// 2006 American Control Conference. Minneapolis: [s. n.], 2006: 3158-3163.
5 KARPENKO M, SEPEHRI N. Design and experimental evaluation of a nonlinear position controller for a pneumatic actuator with friction [C]// 2004 American Control Conference. Boston: [s. n.], 2004: 5078-5083.
6 KARPENKO M, SEPEHRI N. QFT design of a PI controller with dynamic pressure feedback for positioning a pneumatic actuator [C]// 2004 American Control Conference. Boston: [s. n.], 2004: 5084-5089.
7 PANDIAN S R, HAYAKAWA Y, KANAZAWA Y, et al Practical design of a sliding mode controller for pneumatic actuators[J]. Journal of Dynamic Systems, Measurement, and Control, 1997, 119 (4): 666- 674
doi: 10.1115/1.2802376
8 罗卓军. 基于数理模型的列车直通式电空制动系统闭环鲁棒控制[D]. 上海: 同济大学, 2016: 46-60.
LUO Zhuo-jun. Robust control study on a direct-acting electro-pneumatic train brake system based on mathe matical models [D]. Shanghai: Tongji University, 2016: 46-60.
9 HEJRATI B, NAJAFI F Accurate pressure control of a pneumatic actuator with a novel pulse width modulation-sliding mode controller using a fast switching on/off valve[J]. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 2013, 227 (2): 230- 242
10 LAI J Y, MENQ C H, SIGNH R Accurate position control of a pneumatic actuator[J]. Journal of Dynamic Systems, Measurement and Control, 1990, 112 (4): 734- 739
doi: 10.1115/1.2896202
11 BARTH E J, ZHANG J L, GOLDFARB M. Sliding mode approach to PWM-controlled pneumatic systems [C]// 20th Annual American Control Conference. Anchorage: [s.n.], 2002: 2362-2367.
12 SHEN X R, ZHANG J L, BARTH E J, et al Nonlinear model-based control of pulse width modulated pneumatic servo systems[J]. Journal of Dynamic Systems, Measurement, and Control, 2005, 128 (3): 663- 669
13 高钦和, 刘志浩, 宋海洲 基于高速开关阀的液压缸速度控制系统设计[J]. 流体传动与控制, 2013, 57 (2): 5- 9
GAO Qin-he, LIU Zhi-hao, SONG Hai-zhou Design of hydraulic cylinder speed control system based on high speed switch valve[J]. Fluid Power Transmission and Control, 2013, 57 (2): 5- 9
doi: 10.3969/j.issn.1672-8904.2013.02.004
[1] 万有财,张雷,李明,刘斌,梅元贵. 山区高速列车车体动态当量泄漏面积阈值[J]. 浙江大学学报(工学版), 2021, 55(4): 695-703.
[2] 赵艳龙,李醒飞,杨少波,李洪宇,徐佳毅,林越. 剖面浮标“浮星”可变浮力系统性能研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1240-1248.
[3] 夏晋,甘润立,方言,赵羽习,金伟良. 装配式结构套筒灌浆连接的混凝土结合界面直剪性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 491-498.
[4] 李亚峰,聂如松,冷伍明,程龙虎,梅慧浩,董俊利. 间歇性循环荷载作用下细粒土的变形特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2109-2119.
[5] 童基均,柏雁捷,潘剑威,杨佳锋,蒋路茸. 基于变分模态分解的心冲击信号和呼吸信号分离[J]. 浙江大学学报(工学版), 2020, 54(10): 2058-2066.
[6] 陆亮,夏飞燕,訚耀保,原佳阳,郭生荣. 小球式旋转直驱压力伺服阀卡滞机理研究[J]. 浙江大学学报(工学版), 2019, 53(7): 1265-1273.
[7] 黄祖慰,雷俊卿,桂成中,郭殊伦. 斜拉桥正交异性钢桥面板疲劳试验研究[J]. 浙江大学学报(工学版), 2019, 53(6): 1071-1082.
[8] 赵川,余隋怀,王磊,李文华. 不同采样密度下体压分布特征[J]. 浙江大学学报(工学版), 2019, 53(2): 268-274.
[9] 余良贵,周建,温晓贵,徐杰,罗凌晖. 重塑高岭土渗透各向异性影响因素[J]. 浙江大学学报(工学版), 2019, 53(2): 275-283.
[10] 张鹤然,欧阳小平,郭生荣,刘玉龙. 基于回油液阻的压力伺服阀啸叫分析[J]. 浙江大学学报(工学版), 2019, 53(11): 2085-2091.
[11] 刘新荣, 刘俊, 黄伦海, 王子娟, 陈红军, 冯艳. 黄土连拱隧道开挖的模型试验与压力拱分析[J]. 浙江大学学报(工学版), 2018, 52(6): 1140-1149.
[12] 张雪辉, 陈吉祥, 白云, 陈昂, 黄德中. 类矩形土压平衡盾构施工引起的地表变形[J]. 浙江大学学报(工学版), 2018, 52(2): 317-324.
[13] 杨超, 张怀新. 移动粒子半隐式法模拟入水冲击流固耦合问题[J]. 浙江大学学报(工学版), 2018, 52(11): 2092-2097.
[14] 吴建奇, 杨骁, 徐旭, 刘飞禹. 部分排水条件下饱和红黏土循环试验研究[J]. 浙江大学学报(工学版), 2017, 51(7): 1309-1316.
[15] 杜洋, 马利, 郑津洋, 张帆, 张安达. 考虑流固耦合的管道爆炸后果预测与分析[J]. 浙江大学学报(工学版), 2017, 51(3): 429-435.