Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (6): 1071-1082    DOI: 10.3785/j.issn.1008-973X.2019.06.006
土木与建筑工程     
斜拉桥正交异性钢桥面板疲劳试验研究
黄祖慰(),雷俊卿*(),桂成中,郭殊伦
北京交通大学 土木建筑工程学院,北京 100044
Experimental study of fatigue on orthotropic steel deck of cable-stayed bridge
Zu-wei HUANG(),Jun-qing LEI*(),Cheng-zhong GUI,Shu-lun GUO
College of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
 全文: PDF(2124 KB)   HTML
摘要:

以板桁斜拉桥的Q500qE正交异性钢桥面板作为研究对象,采用足尺节段模型疲劳试验和数值模拟的方法,对具有宽U肋的正交异性钢桥面板关键细节的疲劳性能进行研究. 通过施加预应力的方法模拟桥面板的轴压力. 3个试验模型总计进行650万次变幅疲劳循环加载. 研究结果表明,嵌补段焊缝初始裂纹以宏观长裂纹的方式出现在腹板下缘,荷载幅越大,初始裂纹越长;宽U肋嵌补段腹板和底板的裂纹扩展可以分为4个阶段,各阶段间有明显的分界点;裂纹扩展速度与裂纹扩展长度正相关;轴压力增大了嵌补段裂纹扩展速度;对设置了焊接垫板的宽U肋嵌补段的焊缝余高进行铲除并磨平处理可以提高焊缝细节的疲劳强度. 推荐采用我国公路钢桥结构设计规范(JTG D64-2015)中110类细节疲劳强度设计宽U肋嵌补段对接接头焊缝.

关键词: 正交异性钢桥面板足尺疲劳试验轴向压力U肋嵌补段裂纹扩展疲劳强度    
Abstract:

Orthotropic steel (Q500qE) deck of cable-stayed bridge with plate-truss composite structure was taken as the research object. Fatigue test and numerical simulation were done to study full-scale girder segment models with broad U-rib fatigue features of key fatigue details in orthotropic steel deck. Method of pre-stressing force was adopted to simulate the initial axial pressure in deck. The three segment models were loaded by 6.5 million variable amplitude fatigue cycles. Results prove that the initial long macro crack occurs in the bottom of butt-welded splice joints of U-rib-web. The length of initial macro crack is proportional to the stress amplitude. The crack growth stage of broad U-shape-rib can be divided into four parts with clear demarcation point between each part. Crack growth rate is proportional to crack length. Crack growth rate is increased under the effect of axial force. Fatigue strength of welding details can be increased when the excess weld metal of welding seam is eradicated and abraded after welding with back-up member for embedded section of broad U-rib. It is recommended that the butt joint weld of the wide U-rib embedded section can be designed with the fatigue strength of category 110 in China's specification for structural design of highway steel bridge (JTG D64-2015).

Key words: orthotropic steel deck    full-scale fatigue test    axial compressive force    U-rib embedded section    crack growth    fatigue strength
收稿日期: 2018-05-31 出版日期: 2019-05-22
CLC:  U 443.32  
通讯作者: 雷俊卿     E-mail: zuwei_huang@bjtu.edu.cn;jqlei@bjtu.edu.cn
作者简介: 黄祖慰(1987—),男,博士生,从事公铁两用斜拉桥疲劳研究. orcid.org/0000-0002-8016-5125. E-mail: zuwei_huang@bjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄祖慰
雷俊卿
桂成中
郭殊伦

引用本文:

黄祖慰,雷俊卿,桂成中,郭殊伦. 斜拉桥正交异性钢桥面板疲劳试验研究[J]. 浙江大学学报(工学版), 2019, 53(6): 1071-1082.

Zu-wei HUANG,Jun-qing LEI,Cheng-zhong GUI,Shu-lun GUO. Experimental study of fatigue on orthotropic steel deck of cable-stayed bridge. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1071-1082.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.06.006        http://www.zjujournals.com/eng/CN/Y2019/V53/I6/1071

图 1  试验设计简图及现场布置情况
图 2  正交异性钢桥面板足尺节段模型基本构造示意图
项目 σy/MPa σcr/MPa δs/% σy/σcr
试验Ⅰ 546 665 20.0 0.82
试验Ⅱ 570 667 21.0 0.85
试验Ⅲ 546 655 19.5 0.83
试验Ⅳ 518 640 27.5 0.81
均值 545 657 22.0 0.83
变异系数 0.79 0.50 8.14 14.46
表 1  Q500qE材料特性实测值
图 3  开裂试件的有限元模型
试件 N/104 Fmin/kN Fmax/kN f/Hz $\Delta$F/kN R
A 0~100 20 91 4.0 71 0.220
100~150 30 101 4.0 71 0.297
150~200 40 111 4.0 71 0.360
200~250 40 260 2.0 220 0.154
250~277 10 430 1.5 420 0.023
B 0~50 10 260 2.0 250 0.038
50~100 10 170 3.0 160 0.059
100~200 10 130 3.0 120 0.077
200~219.6 10 260 1.5 250 0.038
C 0~152.5 10 260 2.0 250 0.038
表 2  Q500qE材料特性实测值
图 4  试件A嵌补段裂纹开展情况
图 5  试件B嵌补段裂纹开展情况
图 6  试件C嵌补段裂纹开展情况
图 7  U肋底板应变测点布置
图 8  试件裂纹分布情况与测点应力变化
MPa
试件 阶段 1 阶段 2 阶段 3 阶段 4
t4 t5 t6 t4 t5 t6 t4 t5 t6 t4 t5 t6
A 145 146 161 143 146 146 ? ? ? 0.6 95 399
B 167 156 152 163 156 178 166 193 133 511 19 ?23
C 150 150 156 151 155 194 154 215 116 383 0 ?4
表 3  250 kN荷载作用下嵌补段测点应力
MPa
测点 试件A 试件B 试件C
开裂前 最终 开裂前 最终 开裂前 最终
Fps F0 Fps+F0 Fps F0 Fps+F0 Fps F0 Fps+F Fps F0 Fps+F F0 F0
t1 ?34 202 168 ?3 93 91 ?34 200 166 ?57 304 247 200 239
t2 ?34 190 156 ?33 182 149 ?34 188 154 ?31 160 129 188 114
t3 ?34 202 168 ?62 294 232 ?34 200 166 ?7 65 58 200 28
t4 ?34 139 104 0 1 1 ?34 151 118 ?121 377 256 151 244
t5 ?34 139 105 ?1 3 2 ?34 151 117 ?2 3 1 151 0
t6 ?34 139 104 ?162 372 210 ?34 151 118 1 0 1 151 0
表 4  250 kN荷载作用下的有限元模型测点应力
mm
试件 阶段1 阶段2 阶段3 阶段4
t6 t3 t7 t6 t3 t7 t6 t3 t7 t6 t3 t7
A 2.9 3.3 2.7 2.9 3.3 2.5 ? ? ? 3.5 4.0 3.7
B 1.8 2.6 2.0 1.9 2.6 2.0 1.9 2.7 2.01 3.5 4.0 3.6
C 2.1 2.6 1.9 2.1 2.7 1.9 2.3 2.8 2.1 5.15 5.29 4.3
表 5  250 kN荷载作用下跨中测点位移
图 9  试件荷载与位移曲线
图 10  试件荷载与位移曲线
mm
项目 实测数据 坐标投影
裂纹位置 U肋腹板 U肋底板 U肋腹板 U肋底板
阶段 初始 扩展 初始 扩展 初始 扩展 初始 扩展
试件A 84.0 104.5 17.0 201.0 90.9 104.5 23.0 201.0
试件B 38.0 104.4 26.8 193.6 64.2 104.6 13.2 201.4
试件C 30.0 131.7 21.5 214.7 61.1 131.7 6.1 212.0
表 6  U肋腹板与底板裂纹长度统计
图 11  试件A U肋嵌补段的裂纹扩展规律
图 12  试件B和试件C U肋嵌补段的裂纹扩展情况
图 13  裂纹扩展速度与疲劳荷载循环作用次数的关系
图 14  U肋嵌补段裂纹扩展规律
MPa
测点位置 跨中 嵌补段
t1 t2 t3 t4 t5 t6
试件A ?30.2 ?34.9 ?31.5 ?29.8 ?32.6 ?33.0
试件B ?24.2 ?22.9 ?23.1 ?25.0 ?22.9 ?22.7
表 7  U肋测点初始轴压应力
位置 阶段 试件A 试件B 试件C
N/104 v′/(104 mm·次?1 N/104 v′/(104mm·次?1 N/104 v′/(104mm·次?1
底板 a 2.7 8.6 2.4 5.5 6.1 0.7
b 9.0 1.1 9.3 0.3 28.9 0.8
c 12.3 30.6 18.9 10.1 35.1 14.5
d 12.4 616.0 19.9 90.5 35.8 144.8
腹板 a 2.7 33.8 2.4 26.6 4.1 14.8
b' 6.4 2.2 12.8 2.2 30.0 2.6
c' 11.9 5.5 19.4 6.8 35.5 7.1
d' 12.4 115.4 19.9 71.3 35.8 79.0
表 8  疲劳裂纹亚临界扩展速度
图 15  裂纹扩展速度与裂纹长度的关系
图 17  不同荷载作用下试件B的U肋嵌补段疲劳裂纹尖端应力
图 16  试件B的U肋嵌补段疲劳裂纹尖端
试件 $\Delta {S_{\rm{a}}}$/MPa N/104 Fps0/kN
t4 t5 t6
A 131.3 134.1 146.3 200 560
B 119.6 112.2 112.1 200 640
C 138.5 129.7 126.3 200 0
表 9  U肋嵌补段疲劳强度
图 18  正交异性钢桥面板宽U肋嵌补段对接焊缝疲劳强度等级
1 张清华, 崔闯, 卜一之, 等 正交异性钢桥面板足尺节段疲劳模型试验研究[J]. 土木工程学报, 2015, (4): 72- 83
ZHANG Qing-hua, GUI Chuang, Bu Yi-zhi, et al Experimental study on fatigue features of orthotropic bridge deck through full-scale segment models[J]. China Civil Engineering Journal, 2015, (4): 72- 83
2 王春生, 付炳宁, 张芹, 等 正交异性钢桥面板足尺疲劳试验[J]. 中国公路学报, 2013, 26 (2): 69- 76
WANG Chun-sheng, FU Bing-ning, ZHANG Qin, et al Fatigue test on full-scale orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2013, 26 (2): 69- 76
doi: 10.3969/j.issn.1001-7372.2013.02.011
3 SIM H B, UANG C M, SIKORSKY C Effects of fabrication procedures on fatigue resistance of welded joints in steel orthotropic decks[J]. Journal of Bridge Engineering, 2009, 14 (5): 366- 373
doi: 10.1061/(ASCE)1084-0702(2009)14:5(366)
4 WOLCHUK R Lessons from weld cracks in orthotropic decks on three European bridges[J]. Journal of Structural Engineering, 1990, 116 (1): 75- 84
doi: 10.1061/(ASCE)0733-9445(1990)116:1(75)
5 WOLCHUK R Steel orthotropic decks: developments in the 1990s[J]. Transportation Research Record Journal of the Transportation Research Board, 1999, 1688 (1688): 30- 37
6 TSAKOPOULOS P A, FISHER J W Full-Scale fatigue tests of steel orthotropic decks for the Williamsburg bridge[J]. Journal of Bridge Engineering, 2003, 8 (5): 323- 333
doi: 10.1061/(ASCE)1084-0702(2003)8:5(323)
7 苟超, 郑凯锋, 栗怀广, 等 大跨斜拉桥钢箱梁正交异性桥面详细应力计算和桥面优化研究[J]. 钢结构, 2016, 31 (12): 82- 87
GOU Chao, ZHENG Kai-feng, LI Guang-huai, et al Analysis of detailed stresses calculation and optimization for orthotropic steel deck of box girder of long-span cable-stayed bridge[J]. Steel Construction, 2016, 31 (12): 82- 87
8 何畏, 李乔 板桁组合结构体系受力特性及计算方法研究[J]. 中国铁道科学, 2001, 22 (5): 65- 72
HE Wei, LI Qiao Study on features of force bearing of plate and truss composite structure system and the calculation method[J]. China Railway Science, 2001, 22 (5): 65- 72
doi: 10.3321/j.issn:1001-4632.2001.05.011
9 秦竟熙, 张明金, 李永乐 大跨度公铁两用斜拉桥板桁主梁受力特性研究[J]. 桥梁建设, 2014, 44 (6): 46- 51
QIN Jing-xi, ZHANG Ming-jin, LI Yong-le Study of mechanical characteristics of plate and truss main girder of long span rail-cum-load cable-stayed bridge[J]. Bridge Construction, 2014, 44 (6): 46- 51
10 颜智法. 斜索桥板桁结合桥面系力学特性及剪力滞计算方法研究[D]. 成都: 西南交通大学. 2011.
YAN Zhi-fa. Study of mechanical property and calculation Method of shear lag effect in truss girder with integral orthotropic deck of suspension bridge [D]. Chengdu: Southwest Jiaotong University. 2011.
11 徐向军, 贝玉成, 常国光 新型高性能桥梁用Q500q钢板焊接试验研究(二)[J]. 金属加工: 热加工, 2015, (16): 64- 67
XU Xiang-jun, BEI Yu-cheng, CHANG Guo-guang Test study of welding for new high performance bridge Q500q steel plate[J]. Steel Structure, 2015, (16): 64- 67
12 田越. 500 MPa级高性能钢(Q500qE)在铁路钢桥中的应用研究[D]. 北京: 中国铁道科学研究院, 2010.
TIAN Yue. Research on 500 MPa class high performance steel (Q500qE) using in railway steel bridges [D]. Beijing: China Academy of Railway Sciences Corporation Limited, 2010.
13 祝志文, 向泽 大尺寸纵肋顶板-U肋构造细节的受力分析[J]. 钢结构, 2016, 31 (11): 38- 41
ZHU Zhi-wen, XIANG Ze Stress analysis for structural detail on large-sized U-rib to deck plate welding connection[J]. Steel Construction, 2016, 31 (11): 38- 41
14 郭伟峰. 新型大纵肋正交异性钢板−混凝土组合桥面板优化设计及适用性研究[D]. 成都: 西南交通大学, 2016.
GUO Wei-feng. Research on optimization design and applicability of new large longitudinal rib orthotropic steel-concrete composite bridge deck [D]. Chengdu: Southwest Jiaotong University, 2016.
15 WOLCHUK R Prefabricating standard orthotropic steel decks[J]. Morden Steel Construction, 2006, (12): 49- 51
16 赵欣欣. 正交异性钢桥面板疲劳设计参数和构造细节研究[D]. 北京: 中国铁道科学研究院, 2010.
ZHAO Xin-xin. Research on fatigue design parameter and structural details for orthotropic deck [D]. Beijing: China Academy of Railway Sciences Corporation Limited, 2010.
17 潘永杰, 张玉玲, 田越 Q500qE高性能钢工型梁极限承载力研究[J]. 中国铁道科学, 2011, 32 (3): 16- 20
PAN Yong-jie, ZHANG Yu-ling, TIAN Yue Study on the ultimate bearing capacity of I-Shaped beam made by high performance steel Q500qE[J]. China Railway Science, 2011, 32 (3): 16- 20
18 鞠晓臣, 田越, 赵欣欣 Q500qE高强钢压杆稳定研究[J]. 铁道建筑, 2015, (10): 80- 84
JU Xiao-chen, TIAN Yue, ZHAO Xin-xin Research of compression stability of Q500qE high strength steel rod[J]. Railway Engineering, 2015, (10): 80- 84
doi: 10.3969/j.issn.1003-1995.2015.10.17
19 曹珊珊,雷俊卿,黄祖慰 大跨多线公铁两用斜拉桥索锚结构疲劳荷载效应[J]. 中南大学学报: 自然科学版, 2017, (12): 3301- 3308
CAO Shan-shan, LEI Jun-qing, HUANG Zu-wei Analysis of fatigue load amplitude of cable-girder anchorage structure in long-span highway-railway cable-stayed bridge[J]. Journal of Central South University: Science and Technology, 2017, (12): 3301- 3308
20 张彦华. 焊接结构疲劳分析[M]. 北京: 化学工业出版社, 2013: 43–44.
21 唐亮, 黄李骥, 刘高, 等 正交异性钢桥面板足尺模型疲劳试验[J]. 土木工程学报, 2014, (3): 112- 122
TANG Liang, HUANG Li-ji, LIU Gao, et al Fatigue experimental study of a full-scale steel orthotropic deck model[J]. China Civil Engineering Journal, 2014, (3): 112- 122
[1] 王泓晖,房鑫,李德江,刘贵杰. 基于动态贝叶斯网络的变幅载荷下疲劳裂纹扩展预测方法[J]. 浙江大学学报(工学版), 2021, 55(2): 280-288.
[2] 夏晋,甘润立,方言,赵羽习,金伟良. 装配式结构套筒灌浆连接的混凝土结合界面直剪性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 491-498.
[3] 廖小伟,王元清,吴剑国,石永久. 低温环境下十字形非传力角焊缝接头的疲劳性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2018-2026.
[4] 钟雯,丁幼亮,宋永生,曹宝雅,耿方方. 顶板-纵肋焊接细节残余应力的松弛效应[J]. 浙江大学学报(工学版), 2020, 54(1): 83-90.
[5] 秦洪远, 刘一鸣, 黄丹. 脆性多裂纹扩展问题的近场动力学建模分析[J]. 浙江大学学报(工学版), 2018, 52(3): 497-503.
[6] 李明, 刘扬, 唐雪松. 疲劳裂纹的跨尺度分析[J]. 浙江大学学报(工学版), 2017, 51(3): 524-531.
[7] 狄生奎, 文铖, 叶肖伟. 正交异性钢桥面板结构热点应力有限元分析[J]. 浙江大学学报(工学版), 2015, 49(2): 225-231.
[8] 陈仁朋,王作洲,蒋红光,边学成. 基于轨道板抗弯疲劳强度的不均匀沉降控制[J]. J4, 2013, 47(5): 796-802.
[9] 李一民,郝志勇,曾小春. 考虑油膜润滑的连杆有限元分析[J]. J4, 2012, 46(7): 1233-1237.
[10] 杨兴旺, 毕国丽, 张雪, 等. 激光控制裂纹扩展的路径迭代法及收敛性分析[J]. J4, 2009, 43(11): 2043-2047.
[11] 周迅 向馗 俞小莉. D-Markov模型在疲劳裂纹扩展模式识别中的应用[J]. J4, 2008, 42(3): 549-552.
[12] 彭禹 郝志勇. 基于有限元和多体动力学联合仿真的疲劳寿命预测[J]. J4, 2007, 41(2): 325-328.
[13] 周迅 俞小莉. 曲轴疲劳裂纹扩展速率测量的扫频法[J]. J4, 2007, 41(11): 1886-1892.
[14] 陶伟明 毕国丽 章惠全 武藤睦治. 钠钙玻璃板激光热应力切割过程的有限元仿真[J]. J4, 2005, 39(9): 1423-1426.
[15] 焦磊 李贵军 王乐勤. 加氢反应器接管裂纹的疲劳扩展分析[J]. J4, 2005, 39(9): 1455-1460.