Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (11): 2092-2097    DOI: 10.3785/j.issn.1008-973X.2018.11.007
土木与水利工程     
移动粒子半隐式法模拟入水冲击流固耦合问题
杨超, 张怀新
上海交通大学 海洋工程国家重点实验室 高新船舶与深海开发装备协同创新中心, 上海 200240
Simulation of fluid-solid coupling problem during water-entry impact using moving-particle semi-implicit method
YANG Chao, ZHANG Huai-xin
Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration(CISSE), State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(758 KB)   HTML
摘要:

利用传统的基于网格信息的方法处理大变形自由表面、液面破损、弹性结构变形等问题时,网格会产生严重的扭曲变形,从而导致较大的计算误差甚至计算终止。移动粒子半隐式(MPS)法是一种无网格拉格朗日计算方法,摆脱了计算网格的约束,抛开了网格重构。在计算过程中不会发生网格变形过大或者网格畸变的问题,适用于处理流固耦合交界面等不连续问题.采用统一的MPS粒子将宏观流体和固体按一定的形式离散,解决统一坐标系的协调问题.在利用传统的网格数值方法计算流固耦合问题时,对流固耦合交界面的处理非常繁琐,而利用MPS法则不需要对流固耦合交界面做单独处理,简化了处理程序.运用MPS法对平底结构入水冲击问题进行流固耦合数值模拟。模拟和实验结果的对比表明MPS法可以很好地应用于冲击入水等不连续问题的数值计算.

Abstract:

Meshes may be severely distorted when the traditional methods based on grid information are used to deal with the problems of large deformation free surface, liquid surface breakage and elastic structure deformation. This may lead to large calculation error and even termination of calculation. Moving-particle semi-implicit (MPS) method is one of meshless Lagrangian calculation methods, which uses particles instead of mesh and has advantage in dealing with the discontinuous problems such as fluid-solid coupling interface. The unified MPS particles were used to separate the macroscopic fluid and solid in a certain form to deal with coordination problem in the unified coordinate system. It was cumbersome to handle the fluid-solid coupling interface with the traditional grid numerical method. The MPS method was simple because the treatment for the fluid-solid coupling interface is not needed. The MPS method was used to simulate the water-entry impact of a flat bottom structure. Comparison between simulation and experimental results showed that the MPS method can be well applied to the numerical simulation of the discontinuous problems such as water entry problem.

收稿日期: 2017-08-10 出版日期: 2018-11-22
CLC:  U66  
基金资助:

国家自然科学基金资助项目(51479116,11272213)

通讯作者: 张怀新,女,教授.orcid.org/0000-0002-4157-5906.     E-mail: huaixinzhang@126.com
作者简介: 杨超(1984-),男,博士生,从事无网格法研究.orcid.org/0000-0001-5489-9857.E-mail:yangchaojali@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

杨超, 张怀新. 移动粒子半隐式法模拟入水冲击流固耦合问题[J]. 浙江大学学报(工学版), 2018, 52(11): 2092-2097.

YANG Chao, ZHANG Huai-xin. Simulation of fluid-solid coupling problem during water-entry impact using moving-particle semi-implicit method. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2092-2097.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.11.007        http://www.zjujournals.com/eng/CN/Y2018/V52/I11/2092

[1] PANCIROLI R, SHAMS A, PORFIRI M. Experiments on the water entry of curved wedges:high speed imaging and particle image velocimetry[J]. Ocean Engineering, 2015, 94:213-222.
[2] JALALISENDI M, SHAMS A, PANCIROLI R, et al. Experimental reconstruction of three-dimensional hydrodynamic loading in water entry problems through particle image velocimetry[J]. Experiments in Fluids, 2015, 56(2):41.
[3] ROSIS A, FALCUCCI G, PORFIRI M, et al. Hydroelastic analysis of hull slamming coupling lattice Boltzmann and finite element methods[J]. Computers and Structures, 2014, 138(4):24-35.
[4] PANCIROLI R, ABRATE S, MINAK G. Hydroelasticity in water-entry problems:comparison between experimental and SPH results[J]. Composite Structures, 2012, 94(2):532-539.
[5] 卢旦, 李承铭. 基于嵌入空间变形体法的流固耦合网格更新[J]. 浙江大学学报:工学版, 2013, 47(3):508-514 LU Dan, LI Cheng-ming. Mesh update meth for fluid-solid coupling computation based on embedding spatial deformation method[J]. Journal of Zhejiang University:Engineering Science, 2013, 47(3):508-514
[6] 乔华, 陈伟球. 基于Arlequin方法的无网格法与有限元法耦合[J]. 浙江大学学报:工学版, 2011, 45(3):526-530 QIAO Hua, CHEN Wei-qiu. Coupling between meshless method and finite element method based on Arlequin method[J]. Journal of Zhejiang University:Engineering Science, 2011, 45(3):526-530
[7] 李九红. 一种新的无网格方法与有限元耦合法[J]. 工程数学学报, 2008, 25(6):321-336 LI Jiu-hong. A new coupled meshless-finite element method[J]. Chinese Journal of Engineering Mathematics, 2008, 25(6):321-336
[8] KOSHIZUKA S, OKA Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid[J]. Nuclear Science and Engineering, 1996, 123(3):421-434.
[9] 潘徐杰, 张怀新. 用移动粒子半隐式法模拟液舱横摇晃荡现象[J]. 上海交通大学学报, 2008, 42(11):1904-1907 PAN Xu-jie, ZHANG Huai-xin. Moving-partical semi-implicit method for simulation of liquid sloshing on roll motion[J]. Journal of Shanghai JiaoTong University, 2008, 42(11):1904-1907
[10] SHIBATA K, MASAIE I, KONDO M, et al. Improved pressure calculation for the moving particle semi-implicit method[J]. Computational Particle Mechanics, 2015, 2(1):91-108.
[11] QIAN Y, ZHANG H. Research on water entry of wedge based on the improved MPS method with large eddy simulation[J]. Ocean Engineering, 2013, 31(6):9-108.
[12] GOTOH H, SAKAI T. Largrangian simulation of breaking waves using particle method[J]. Coast Engineering Journal, 1999, 41:303-326.
[13] TANG Q, ZHANG G, LIU G, et al. A three-dimensional adaptive analysis using the meshfree node-based smoothed point interpolation method (NS-PIM)[J]. Engineering Analysis with Boundary Elements, 2011, 35(10):1123-1135.
[14] CHEN Z, XIAO X, WANG D. Simulation study on flat-bottom structure slamming[J]. China Ocean Engineering, 2005, 19(3):375-394.
[15] TANG Q, ZHANG G, LIU G, et al. An efficient adaptive analysis procedure using the edge-based smoothed point interpolation method (ES-PIM) for 2D and 3D problems[J]. Engineering Analysis with Boundary Elements, 2012, 36(9):1424-1443.
[16] HE Z, LIU G, ZHONG Z, et al. A coupled ES-FEM/BEM method for fluid-structure interaction problems[J]. Engineering Analysis with Boundary Elements, 2011, 35(1):140-147.
[17] XIA B, CHEN Z. The simulation analysis of the slamming of elastic flat bottom marine structure[J]. China Offshore Platform, 2005, 1:102-106.

No related articles found!