机械工程 |
|
|
|
|
不确定性扰动下双足机器人动态步行的自适应鲁棒控制 |
袁海辉( ),葛一敏,甘春标*( ) |
浙江大学 机械工程学院,浙江 杭州 310027 |
|
Adaptive robust control of dynamic walking of bipedal robots under uncertain disturbances |
Hai-hui YUAN( ),Yi-min GE,Chun-biao GAN*( ) |
School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China |
1 |
CHEN X, YU Z G, ZHANG W, et al Bio-inspired control of walking with toe-off, heel-strike and disturbance rejection for a biped robot[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (10): 7962- 7971
doi: 10.1109/TIE.2017.2698361
|
2 |
KUINDERSMA S, DEITS R, FALLON M, et al Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot[J]. Autonomous Robots, 2016, 40 (3): 429- 455
doi: 10.1007/s10514-015-9479-3
|
3 |
ZHAO Y, FERNANDEZ B R, SENTIS L Robust optimal planning and control of non-Periodic bipedal locomotion with a centroidal momentum model[J]. The International Journal of Robotics Research, 2017, 36 (11): 1211- 1242
doi: 10.1177/0278364917730602
|
4 |
DAI H, TEDRAKE R. L2-gain optimization for robust bipedal walking on unknown terrain [C]// 2013 IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE, 2013: 3116-3123.
|
5 |
YANCO H A, NORTON A, OBER W, et al Analysis of human?robot interaction at the DARPA robotics challenge trials[J]. Journal of Field Robotics, 2015, 32 (3): 420- 444
doi: 10.1002/rob.21568
|
6 |
KOBAYASHI T, AOYAMA T, HASEGAWA Y, et al Adaptive speed controller using swing leg motion for 3-D limit-cycle-based bipedal gait[J]. Nonlinear Dynamics, 2016, 84 (4): 1- 20
|
7 |
葛一敏, 袁海辉, 甘春标 基于步态切换的欠驱动双足机器人控制方法[J]. 力学学报, 2018, 50 (4): 871- 879 GE Yi-min, YUAN Hai-hui, GAN Chun-biao Control method of an underactuated biped robot based on gait transition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50 (4): 871- 879
doi: 10.6052/0459-1879-18-049
|
8 |
RAHMANI M, GHANBARI A, ETTEFAGH M M A novel adaptive neural network integral sliding-mode control of a biped robot using bat algorithm[J]. Journal of Vibration and Control, 2018, 24 (10): 2045- 2060
doi: 10.1177/1077546316676734
|
9 |
SANTOS C P, ALVES N, MORENO J C Biped locomotion control through a biomimetic CPG-based controller[J]. Journal of Intelligent and Robotic Systems, 2016, 85: 1- 24
|
10 |
田彦涛, 孙中波, 李宏扬, 等 动态双足机器人的控制与优化研究进展[J]. 自动化学报, 2016, 42 (8): 1142- 1157 TIAN Yan-tao, SUN Zhong-bo, LI Hong-yang, et al A review of optimal and control strategies for dynamic walking bipedal robots[J]. Acta Automatica Sinica, 2016, 42 (8): 1142- 1157
|
11 |
VEER S, MOTAHAR M S, POULAKAKIS I. On the adaptation of dynamic walking to persistent external forcing using hybrid zero dynamics control [C]// 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg: IEEE, 2015: 997-1003.
|
12 |
WANG L, GE Y, CHEN M, et al Dynamical balance optimization and control of biped robots in double-support phase under perturbing external forces[J]. Neural Computing and Applications, 2017, 28 (12): 4132- 4137
|
13 |
HAMED K A, BUSS B G, GRIZZLE J W Exponentially stabilizing continuous-time controllers for periodic orbits of hybrid systems: application to bipedal locomotion with ground height variations[J]. The International Journal of Robotics Research, 2016, 35 (8): 977- 999
doi: 10.1177/0278364915593400
|
14 |
SUN Z, ROOS N Dynamically stable walk control of biped humanoid on uneven and inclined terrain[J]. Neurocomputing, 2018, 280: 111- 122
doi: 10.1016/j.neucom.2017.08.077
|
15 |
MANCHESTER I R, METTIN U, IIDA F, et al Stable dynamic walking over uneven terrain[J]. The International Journal of Robotics Research, 2011, 30 (3): 265- 279
doi: 10.1177/0278364910395339
|
16 |
SABOURIN C, BRUNEAU O, BUCHE G Control strategy for the robust dynamic walk of a biped robot[J]. The International Journal of Robotics Research, 2006, 25 (9): 843- 60
doi: 10.1177/0278364906069151
|
17 |
HAMED K A, GRIZZLE J W Event-based stabilization of periodic orbits for underactuated 3-D bipedal robots with left-right symmetry[J]. IEEE Transactions on Robotics, 2014, 30 (2): 365- 381
doi: 10.1109/TRO.2013.2287831
|
18 |
MONTANO O, ORLOV Y, AOUSTIN Y, et al. Robust stabilization of a fully actuated 3D bipedal locomotion via nonlinear H∞-control under unilateral constraints [C]// 2016 IEEE-RAS, International Conference on Humanoid Robots. Cancun: IEEE, 2016: 538-543.
|
19 |
MAKAROV D, ULEYSKY M Specific Poincaré map for a randomly-perturbed nonlinear oscillator[J]. Journal of Physics: A General Physics, 2005, 39 (3): 489
|
20 |
SHINOZUKA M, JAN C M Digital simulation of random processes and its applications[J]. Journal of Sound and Vibration, 1972, 25 (1): 111- 28
doi: 10.1016/0022-460X(72)90600-1
|
21 |
GAN C B, YANG S X, LEI H A kind of noise-induced transition to noisy chaos in stochastically perturbed dynamical system[J]. Acta Mechanica Sinica, 2012, 28 (5): 1416- 23
doi: 10.1007/s10409-012-0084-9
|
22 |
SLOTINE J-J E, LI W. Applied nonlinear control [M]. Englewood Cliffs: Prentice hall, 1991.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|