Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (8): 1560-1567, 1621    DOI: 10.3785/j.issn.1008-973X.2022.08.010
机械与能源工程     
基于Bouc-Wen修正模型的柔性关节驱动器迟滞建模
许明(),张帝,戎铖,苏礼荣,王万强*()
杭州电子科技大学 机械工程学院,浙江 杭州 310018
Modified Bouc-Wen based hysteresis modeling of flexible joint actuator
Ming XU(),Di ZHANG,Cheng RONG,Li-rong SU,Wan-qiang WANG*()
School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
 全文: PDF(2207 KB)   HTML
摘要:

为了研究柔性关节驱动器输出力的迟滞影响,提高力控制精度,构建了柔性关节驱动力的迟滞实验台,提出柔性关节驱动器输出力的Bouc-Wen修正方法对力迟滞进行精确建模,并通过龙格-库塔-费尔贝格算法对Bouc-Wen修正模型进行参数辨识. 在Bouc-Wen模型的基础上,引入具有方向性的修正项,克服柔性关节驱动器的输出力-转角迟滞的非对称性. 利用关节驱动器在60、80、100、120 kPa充气压力下的力迟滞实验数据,建立Bouc-Wen修正模型. 在70、90、110 kPa充气压力下,将Bouc-Wen修正模型所预测的柔性关节力迟滞曲线与经典Bouc-Wen模型以及实验曲线进行对比. 结果表明所提出的力迟滞Bouc-Wen修正模型,在各充气压力下的最大相对误差仅为7.75%,平均偏差小于0.45 N,模型拟合优度大于0.99. 说明所提出的Bouc-Wen修正模型能够对柔性关节驱动器的力迟滞进行准确建模,为力闭环控制提供基础,也为其他超弹性材料柔性驱动器的迟滞建模提供参考方法.

关键词: 柔性关节驱动器迟滞建模Bouc-Wen修正模型软体机器人参数辨识    
Abstract:

A hysteresis test bench for flexible joint driving force was constructed, in order to study the force hysteresis characteristic of the flexible joint actuator and improve the force control accuracy. The modified Bouc-Wen method was proposed to accurately model the force hysteresis of the joint actuator, and the parameters of the modified Bouc-Wen model were identified by the Runge-Kutta-Fehlberg method. On the basis of the conventional Bouc-Wen model, a directional correction term was introduced to overcome the asymmetry of the output force-angle hysteresis of the flexible joint actuator. The modified Bouc-Wen model was established, using the experimental data of force hysteresis of joint actuator at 60, 80, 100 and 120 kPa inflation pressure. The hysteresis curve predicted by the proposed Bouc-Wen model was compared with that of the conventional Bouc-Wen and the experimental curve at 70, 90 and 110 kPa inflation pressure. Experimental results show that the maximum relative error of the proposed Bouc-Wen based force hysteresis model for the flexible joint actuator under each inflation pressure was only 7.75%, the average deviation remained within 0.45 N, and the fitting goodness of the model was more than 0.99. Results show that the proposed modified Bouc-Wen model can accurately describe the force hysteresis of the flexible joint actuator, which lays a foundation for the force closed-loop control and also provides a promising method for the hysteresis modeling of other hyperelastic flexible actuators.

Key words: flexible joint actuator    hysteresis modeling    modified Bouc-Wen model    soft robot    parameter identification
收稿日期: 2022-02-12 出版日期: 2022-08-30
CLC:  TP 242  
基金资助: 国家自然科学基金资助项目(51975171);浙江省教育厅一般科研项目(专业学位研究生培养模式改革专项)资助项目(Y202146881)
通讯作者: 王万强     E-mail: jxxuming@hdu.edu.cn;wwq@hdu.edu.cn
作者简介: 许明(1982—),男,教授,博士,从事软体机器人驱动研究. orcid.org/0000-0003-1312-6190. E-mail: jxxuming@hdu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
许明
张帝
戎铖
苏礼荣
王万强

引用本文:

许明,张帝,戎铖,苏礼荣,王万强. 基于Bouc-Wen修正模型的柔性关节驱动器迟滞建模[J]. 浙江大学学报(工学版), 2022, 56(8): 1560-1567, 1621.

Ming XU,Di ZHANG,Cheng RONG,Li-rong SU,Wan-qiang WANG. Modified Bouc-Wen based hysteresis modeling of flexible joint actuator. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1560-1567, 1621.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.08.010        https://www.zjujournals.com/eng/CN/Y2022/V56/I8/1560

图 1  仿蜘蛛腿的柔性关节驱动器原理[18]
图 2  柔性关节驱动器设计
参数 数值/mm 参数 数值/mm
w 15 a 7.5
w1 9 d1 3
R 30 d2 2
r 27 u 0.25
l1 24 b 3
表 1  柔性关节驱动器结构参数
图 3  柔性关节驱动器的制造方法
图 4  柔性关节驱动器迟滞实验台
图 5  驱动器迟滞实验原理
图 6  不同气压下输出力与转角迟滞关系
p/kPa A β n γ φ
60 3.102 ?12.030 0.251 ?10.110 3.249
80 1.674 ?6.137 0.500 ?5.615 1.965
100 0.625 0.004 4.440 0.004 1.845
120 0.350 1.265 ?2.416 ?1.277 0.494
表 2  改进Bouc-Wen模型参数表
图 7  2种模型仿真结果与实验数据对比
模型 p/kPa 状态 ?FMAX/N δMAX/% A.D. /N MSE/N R2
经典Bouc-Wen模型 70 去程 1.990 30.48 1.284 1.1532 0.7036
回程 1.342 20.56 0.863
90 去程 2.440 27.11 1.381 0.6577 0.8796
回程 1.213 13.48 0.571
110 去程 3.050 26.99 1.396 0.8666 0.8789
回程 1.638 14.50 0.552
Bouc-Wen修正模型 70 去程 0.444 6.72 0.184 0.2144 0.9906
回程 0.507 7.57 0.139
90 去程 0.420 4.65 0.186 0.1967 0.9946
回程 0.341 3.78 0.142
110 去程 0.847 7.75 0.416 0.4146 0.9932
回程 0.637 5.83 0.287
表 3  柔性关节驱动器迟滞建模评价
1 LI G R, CHEN X P, ZHOU F H, et al Self-powered soft robot in the Mariana Trench[J]. Nature, 2021, 591 (7848): 66- 71
doi: 10.1038/s41586-020-03153-z
2 管清华, 孙健, 刘彦菊, 等 气动软体机器人发展现状与趋势[J]. 中国科学:技术科学, 2020, 50 (7): 897- 934
GUAN Qing-hua, SUN Jian, LIU Yan-ju, et al Status of and trends in soft pneumatic robotics[J]. Scientia Sinica Technologica, 2020, 50 (7): 897- 934
3 CHEN Y H, CHUNG O A, CHEN B, et al A lobster-inspired bending module for compliant robotic applications[J]. Bioinspiration and Biomimetics, 2020, 15 (5): 056009
doi: 10.1088/1748-3190/ab9c8d
4 YE X, ZHU S D, QIAN X, et al. V-shape pneumatictorsional actuator: a building block for soft grasper and manipulator [J/OL]. (2021-6-24). https://www.liebertpub.com/doi/10.1089/soro.2020.0128.
5 PAEZ L, AGARWAL G, PAIK J Design and analysis of a soft pneumatic actuator with origami shell reinforcement[J]. Soft Robotics, 2016, 3 (3): 109- 119
doi: 10.1089/soro.2016.0023
6 LI M, PAL A, AGHAKHANI A, et al Soft actuators for real-world applications[J]. Nature Reviews Materials, 2022, 7 (3): 235- 249
doi: 10.1038/s41578-021-00389-7
7 ZHOU L, REN L L, CHEN Y Bio-inspired soft grippers based on impactive gripping[J]. Advanced Science, 2021, 8 (9): 2002017
doi: 10.1002/advs.202002017
8 郝天泽, 肖华平, 刘书海, 等 集成化智能软体机器人研究进展[J]. 浙江大学学报:工学版, 2021, 55 (2): 229- 243
HAO Tian-ze, XIAO Hua-ping, LIU Shu-hai, et al Research status of integrated intelligent soft robots[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (2): 229- 243
9 徐彦, 方琴, 张超, 等 气动软体自折叠机械臂的驱动和负载性能[J]. 浙江大学学报:工学版, 2020, 54 (2): 398- 406
XU Yan, FANG Qin, ZHANG Chao, et al Driving and load performance of pneumatic soft self-folding manipulator[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (2): 398- 406
10 ZOU J, GU G Y Modeling the viscoelastic hysteresis of dielectric elastomer actuators with a modified rate-dependent Prandtl-Ishlinskii model[J]. Polymers, 2018, 10 (5): 525
doi: 10.3390/polym10050525
11 KONDA R, ZHANG J Hysteresis with lonely stroke in artificial muscles: characterization, modeling, and inverse compensation[J]. Mechanical Systems and Signal Processing, 2022, 164: 108240
doi: 10.1016/j.ymssp.2021.108240
12 HASSANI V, TJAHJOWIDODO T, DO T N A survey on hysteresis modeling, identification and control[J]. Mechanical Systems and Signal Processing, 2014, 49 (1/2): 209- 233
13 CUI R G, LI S H, WANG Z, et al A modified residual stress dependent Jile-Atherton hysteresis model[J]. Journal of Magnetism and Magnetic Materials, 2018, 465: 578- 584
doi: 10.1016/j.jmmm.2018.06.021
14 SHAO B, CHEN B, CAO Y, et al Nonlinear tensile behavior of cotton fabric reinforced polypropylene composites[J]. Journal of Applied Polymer Science, 2020, 138 (5): 49780
15 李梦梦, 李原, 王庆林 EAP柔性智能驱动材料的建模、控制及应用研究进展[J]. 机器人, 2018, 40 (5): 660- 672
LI Meng-meng, LI Yuan, WANG Qing-lin Research progress on modeling, control and application of EAP flexible intelligent driving materials[J]. Robot, 2018, 40 (5): 660- 672
doi: 10.13973/j.cnki.robot.180210
16 THAI M T, PHAN P T, HOANG T T, et al Design, fabrication, and hysteresis modeling of soft microtubule artificial muscle (SMAM) for medical applications[J]. IEEE Robotics and Automation Letters, 2021, 6 (3): 5089- 5096
doi: 10.1109/LRA.2021.3072599
17 HEPP J, BADRI-SPRÖWITZ A. A novel spider-inspired rotary-rolling diaphragm actuator with linear torque characteristic and high mechanical efficiency [J/OL]. (2021-6-21). https://www.liebertpub.com/doi/full/10.1089/soro.2020.0108.
18 KELLARIS N, ROTHEMUND P, ZENG Y, et al Spider-inspired electrohydraulic actuators for fast, soft-actuated joints[J]. Advanced Science, 2021, 8 (14): 2100916
doi: 10.1002/advs.202100916
19 GÖTTLER C, AMADOR G, VAN D K T, et al Fluid mechanics and rheology of the jumping spider body fluid[J]. Soft Matter, 2021, 17 (22): 5532- 5539
doi: 10.1039/D1SM00338K
20 XU M, RONG C, HE L Design and modeling of a bio-inspired flexible joint actuator[J]. Actuators, 2021, 10 (5): 95
doi: 10.3390/act10050095
21 CHEN S E, CAO Y T, SARPARAST M, et al Soft crawling robots: design, actuation, and locomotion[J]. Advanced Materials Technologies, 2020, 5 (2): 1900837
doi: 10.1002/admt.201900837
22 LIN C J, LIN C R, YU S K, et al Hysteresis modeling and tracking control for a dual pneumatic artificial muscle system using Prandtl-Ishlinskii model[J]. Mechatronics, 2015, 28: 35- 45
doi: 10.1016/j.mechatronics.2015.03.006
23 ZHANG Q, DONG Y, PENG Y, et al Asymmetric Bouc-Wen hysteresis modeling and inverse compensation for piezoelectric actuator via a genetic algorithm-based particle swarm optimization identification algorithm[J]. Journal of Intelligent Material Systems and Structures, 2019, 30 (8): 1263- 1275
doi: 10.1177/1045389X19831360
24 PAUL S, MONDAL S P, BHATTACHARYA P Numerical solution of LotkaVolterra prey predator model by using Runge-Kutta-Fehlberg method and Laplace Adomian decomposition method[J]. Alexandria Engineering Journal, 2016, 55 (1): 613- 617
doi: 10.1016/j.aej.2015.12.026
[1] 李健,戴楚彦,王扬威,郭艳玲,查富生. 基于草莓轮廓曲线的单指软体采摘抓手设计与优化[J]. 浙江大学学报(工学版), 2022, 56(6): 1088-1096, 1134.
[2] 张铁,胡亮亮,邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5): 801-809.
[3] 郝天泽,肖华平,刘书海,张超,马豪. 集成化智能软体机器人研究进展[J]. 浙江大学学报(工学版), 2021, 55(2): 229-243.
[4] 潘立, 鲍官军, 胥芳, 张立彬. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报(工学版), 2018, 52(1): 125-132.
[5] 王凯, 姚文熙, 吕征宇. 基于直流偏置激励的异步电机离线参数自整定[J]. 浙江大学学报(工学版), 2015, 49(7): 1382-1387.
[6] 胡彦超 陈章位. 应用实正交多项式的多模态辨识迭代算法[J]. J4, 2008, 42(9): 1563-1567.
[7] 秦莹 江全元 曹一家 李大虎. 基于广域测量系统的电力负荷建模方法[J]. J4, 2008, 42(7): 1199-1203.
[8] 龚大成 唐志峰 项占琴 潘晓弘. 基于Preisach理论的GMA迟滞建模与参数辨识[J]. J4, 2008, 42(3): 425-428.
[9] 李蔚 张政江 盛德仁 陈坚红 任浩仁. 基于RLS的汽轮机数字电液调节系统参数辨识[J]. J4, 2008, 42(10): 1761-1764.
[10] 金海 黄进 杨家强. 感应电机转子磁链自适应观测及参数辨识[J]. J4, 2006, 40(2): 339-343.