机械与能源工程 |
|
|
|
|
基于Bouc-Wen修正模型的柔性关节驱动器迟滞建模 |
许明(),张帝,戎铖,苏礼荣,王万强*() |
杭州电子科技大学 机械工程学院,浙江 杭州 310018 |
|
Modified Bouc-Wen based hysteresis modeling of flexible joint actuator |
Ming XU(),Di ZHANG,Cheng RONG,Li-rong SU,Wan-qiang WANG*() |
School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China |
引用本文:
许明,张帝,戎铖,苏礼荣,王万强. 基于Bouc-Wen修正模型的柔性关节驱动器迟滞建模[J]. 浙江大学学报(工学版), 2022, 56(8): 1560-1567, 1621.
Ming XU,Di ZHANG,Cheng RONG,Li-rong SU,Wan-qiang WANG. Modified Bouc-Wen based hysteresis modeling of flexible joint actuator. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1560-1567, 1621.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.08.010
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I8/1560
|
1 |
LI G R, CHEN X P, ZHOU F H, et al Self-powered soft robot in the Mariana Trench[J]. Nature, 2021, 591 (7848): 66- 71
doi: 10.1038/s41586-020-03153-z
|
2 |
管清华, 孙健, 刘彦菊, 等 气动软体机器人发展现状与趋势[J]. 中国科学:技术科学, 2020, 50 (7): 897- 934 GUAN Qing-hua, SUN Jian, LIU Yan-ju, et al Status of and trends in soft pneumatic robotics[J]. Scientia Sinica Technologica, 2020, 50 (7): 897- 934
|
3 |
CHEN Y H, CHUNG O A, CHEN B, et al A lobster-inspired bending module for compliant robotic applications[J]. Bioinspiration and Biomimetics, 2020, 15 (5): 056009
doi: 10.1088/1748-3190/ab9c8d
|
4 |
YE X, ZHU S D, QIAN X, et al. V-shape pneumatictorsional actuator: a building block for soft grasper and manipulator [J/OL]. (2021-6-24). https://www.liebertpub.com/doi/10.1089/soro.2020.0128.
|
5 |
PAEZ L, AGARWAL G, PAIK J Design and analysis of a soft pneumatic actuator with origami shell reinforcement[J]. Soft Robotics, 2016, 3 (3): 109- 119
doi: 10.1089/soro.2016.0023
|
6 |
LI M, PAL A, AGHAKHANI A, et al Soft actuators for real-world applications[J]. Nature Reviews Materials, 2022, 7 (3): 235- 249
doi: 10.1038/s41578-021-00389-7
|
7 |
ZHOU L, REN L L, CHEN Y Bio-inspired soft grippers based on impactive gripping[J]. Advanced Science, 2021, 8 (9): 2002017
doi: 10.1002/advs.202002017
|
8 |
郝天泽, 肖华平, 刘书海, 等 集成化智能软体机器人研究进展[J]. 浙江大学学报:工学版, 2021, 55 (2): 229- 243 HAO Tian-ze, XIAO Hua-ping, LIU Shu-hai, et al Research status of integrated intelligent soft robots[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (2): 229- 243
|
9 |
徐彦, 方琴, 张超, 等 气动软体自折叠机械臂的驱动和负载性能[J]. 浙江大学学报:工学版, 2020, 54 (2): 398- 406 XU Yan, FANG Qin, ZHANG Chao, et al Driving and load performance of pneumatic soft self-folding manipulator[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (2): 398- 406
|
10 |
ZOU J, GU G Y Modeling the viscoelastic hysteresis of dielectric elastomer actuators with a modified rate-dependent Prandtl-Ishlinskii model[J]. Polymers, 2018, 10 (5): 525
doi: 10.3390/polym10050525
|
11 |
KONDA R, ZHANG J Hysteresis with lonely stroke in artificial muscles: characterization, modeling, and inverse compensation[J]. Mechanical Systems and Signal Processing, 2022, 164: 108240
doi: 10.1016/j.ymssp.2021.108240
|
12 |
HASSANI V, TJAHJOWIDODO T, DO T N A survey on hysteresis modeling, identification and control[J]. Mechanical Systems and Signal Processing, 2014, 49 (1/2): 209- 233
|
13 |
CUI R G, LI S H, WANG Z, et al A modified residual stress dependent Jile-Atherton hysteresis model[J]. Journal of Magnetism and Magnetic Materials, 2018, 465: 578- 584
doi: 10.1016/j.jmmm.2018.06.021
|
14 |
SHAO B, CHEN B, CAO Y, et al Nonlinear tensile behavior of cotton fabric reinforced polypropylene composites[J]. Journal of Applied Polymer Science, 2020, 138 (5): 49780
|
15 |
李梦梦, 李原, 王庆林 EAP柔性智能驱动材料的建模、控制及应用研究进展[J]. 机器人, 2018, 40 (5): 660- 672 LI Meng-meng, LI Yuan, WANG Qing-lin Research progress on modeling, control and application of EAP flexible intelligent driving materials[J]. Robot, 2018, 40 (5): 660- 672
doi: 10.13973/j.cnki.robot.180210
|
16 |
THAI M T, PHAN P T, HOANG T T, et al Design, fabrication, and hysteresis modeling of soft microtubule artificial muscle (SMAM) for medical applications[J]. IEEE Robotics and Automation Letters, 2021, 6 (3): 5089- 5096
doi: 10.1109/LRA.2021.3072599
|
17 |
HEPP J, BADRI-SPRÖWITZ A. A novel spider-inspired rotary-rolling diaphragm actuator with linear torque characteristic and high mechanical efficiency [J/OL]. (2021-6-21). https://www.liebertpub.com/doi/full/10.1089/soro.2020.0108.
|
18 |
KELLARIS N, ROTHEMUND P, ZENG Y, et al Spider-inspired electrohydraulic actuators for fast, soft-actuated joints[J]. Advanced Science, 2021, 8 (14): 2100916
doi: 10.1002/advs.202100916
|
19 |
GÖTTLER C, AMADOR G, VAN D K T, et al Fluid mechanics and rheology of the jumping spider body fluid[J]. Soft Matter, 2021, 17 (22): 5532- 5539
doi: 10.1039/D1SM00338K
|
20 |
XU M, RONG C, HE L Design and modeling of a bio-inspired flexible joint actuator[J]. Actuators, 2021, 10 (5): 95
doi: 10.3390/act10050095
|
21 |
CHEN S E, CAO Y T, SARPARAST M, et al Soft crawling robots: design, actuation, and locomotion[J]. Advanced Materials Technologies, 2020, 5 (2): 1900837
doi: 10.1002/admt.201900837
|
22 |
LIN C J, LIN C R, YU S K, et al Hysteresis modeling and tracking control for a dual pneumatic artificial muscle system using Prandtl-Ishlinskii model[J]. Mechatronics, 2015, 28: 35- 45
doi: 10.1016/j.mechatronics.2015.03.006
|
23 |
ZHANG Q, DONG Y, PENG Y, et al Asymmetric Bouc-Wen hysteresis modeling and inverse compensation for piezoelectric actuator via a genetic algorithm-based particle swarm optimization identification algorithm[J]. Journal of Intelligent Material Systems and Structures, 2019, 30 (8): 1263- 1275
doi: 10.1177/1045389X19831360
|
24 |
PAUL S, MONDAL S P, BHATTACHARYA P Numerical solution of LotkaVolterra prey predator model by using Runge-Kutta-Fehlberg method and Laplace Adomian decomposition method[J]. Alexandria Engineering Journal, 2016, 55 (1): 613- 617
doi: 10.1016/j.aej.2015.12.026
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|