Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (6): 1088-1096, 1134    DOI: 10.3785/j.issn.1008-973X.2022.06.005
智能机器人     
基于草莓轮廓曲线的单指软体采摘抓手设计与优化
李健1(),戴楚彦1,王扬威1,郭艳玲1,查富生2
1. 东北林业大学 黑龙江省林业智能装备工程重点实验室,黑龙江 哈尔滨 150040
2. 哈尔滨工业大学 机器人技术与系统国家重点实验室,黑龙江 哈尔滨 150090
Design and optimization of single-finger soft grasp based on strawberry curve
Jian LI1(),Chu-yan DAI1,Yang-wei WANG1,Yan-ling GUO1,Fu-sheng ZHA2
1. Key Laboratory of Forestry Intelligent Equipment Engineering of Heilongjiang Province, Northeast Forestry University, Harbin 150040, China
2. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150090, China
 全文: PDF(3112 KB)   HTML
摘要:

针对草莓采摘过程中的无损抓取作业需求,改进传统三指软体抓手的结构,基于草莓外部轮廓曲线设计新型单指软体抓手. 基于Abaqus仿真软件对单指抓手完成结构优化,提升弯曲性能,实现软体抓手的完整包裹效果. 改进制造工艺,有效提升单指抓手的重复使用率和安全性. 利用高速摄像机和动态捕捉技术,分析单指抓手上下端面的弯曲变形规律. 测试草莓表面的最小破坏应力和单指抓手的末端力,验证了无损抓取的可行性. 将单指抓手安装在机械臂上进行草莓抓取测试,在模拟草莓自然生长状态时,抓取成功率为80%,破损率为7.5%. 结果表明,气动单指软体抓手可以实现草莓的无损抓取.

关键词: 软体机器人气动驱动有限元仿真优化设计草莓抓取实验    
Abstract:

The structure of the traditional three-finger soft gripper was improved, and a new type of single-finger soft grip was designed based on the strawberry curve for non-destructive grabbing in the process of picking strawberry. Firstly, the structure of the single-finger gripper was optimized based on Abaqus simulation software to realize the complete package of the soft gripper and improve the bending performance. And the manufacturing process was improved to effectively enhance the reuse rate and safety of the single finger gripper. Then, using high speed camera and dynamic capture technology, the bending deformation law of the upper and lower end faces of the single finger gripper was analyzed. Thirdly, both the minimum failure stress on surface of the strawberry and the end force of the soft gripper were test, and the feasibility of nondestructive grasping was verified based on these results. Finally, the single-finger gripper was installed on the manipulator arm to carry out the strawberry grasping test. After simulating the natural growth state of strawberries, the success rate reached 80% and the damage rate was 7.5%. The results proved that the pneumatic single-finger soft gripper could realize the nondestructive grasping of strawberries.

Key words: soft robot    pneumatic    finite element simulation    optimization design    strawberry grasping experiment
收稿日期: 2021-06-16 出版日期: 2022-06-30
CLC:  TH 138  
基金资助: 国家自然科学基金资助项目(51905084)
作者简介: 李健(1985—),男,副教授,主要从事机器人技术、仿生学研究. orcid.org/0000-0002-5227-6944. E-mail: lijian@nefu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李健
戴楚彦
王扬威
郭艳玲
查富生

引用本文:

李健,戴楚彦,王扬威,郭艳玲,查富生. 基于草莓轮廓曲线的单指软体采摘抓手设计与优化[J]. 浙江大学学报(工学版), 2022, 56(6): 1088-1096, 1134.

Jian LI,Chu-yan DAI,Yang-wei WANG,Yan-ling GUO,Fu-sheng ZHA. Design and optimization of single-finger soft grasp based on strawberry curve. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1088-1096, 1134.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.005        https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1088

图 1  草莓轮廓提取过程
图 2  单指抓手的设计曲线
参数 数值 参数 数值
单指抓手长度 $ L $ 110.0 气体腔室长度 $ {l_{\text{c}}} $ 4.0
单指抓手高度 $ H $ 38.2 气体腔室宽度 $ {w_{\text{c}}} $ 4.0
腔室层宽度 $ {W_{\text{q}}} $ 7.0 气体腔室间隔 $ {l_{\text{t}}} $ 5.0
腔室层高度 $ {H_{\text{q}}} $ 36.2 气体通道半径 $ {R_{\text{q}}} $ 2.5
加持部分长度 $ {L_{\text{j}}} $ 22.0 气管通道半径 $ {R_{\text{g}}} $ 1.5
气体腔室壁厚 $ {t_{\text{q}}} $ 3.0 限制层端面壁厚 $ {t_{\text{x}}} $ 1.0
表 1  单指抓手的设计参数
图 3  单指抓手的结构示意图
图 4  壁厚参数对驱动器弯曲性能影响
图 5  单指抓手的结构优化方案
图 6  3种型号单指抓手的仿真结果
图 7  单指抓手的制造过程
图 8  单指抓手捕捉点的定位
图 9  单指抓手的弯曲性能测试
图 10  草莓表面破损的应力分析
图 11  单指抓手末端力测试
图 12  单指抓手观测点的安放位置
图 13  单指抓手观测点的空间位移量
图 14  单指抓手抓取实验
1 GALLOWAY K C, BECKER K P, PHILLIPS B, et al Soft robotic grippers for biological sampling on deep reefs[J]. Soft Robot, 2016, 3 (1): 23- 33
doi: 10.1089/soro.2015.0019
2 FERREIRA M D, SANCHEZ A C, BRAUNBECK O A, et al Harvesting fruits using a mobile platform: a case study applied to citrus[J]. Engenharia Agrícola, 2018, 38 (2): 293- 299
3 MATSUNAGA T, OHNISHI K, WADA N, et al Development of small-diameter haptic flexible gripping forceps robot[J]. Electrical Engineering in Japan, 2020, 211 (1/4): 47- 54
4 陈至灵, 姜树海, 孙翊 农林业采收机器人发展现状[J]. 农业工程, 2019, 9 (2): 20- 28
CHEN Zhi-ling, JIANG Shu-hai, SUN Yi Development status of agroforestry harvesting robots[J]. Agricultural Engineering, 2019, 9 (2): 20- 28
5 金何 智能机器人在农业自动化领域的应用分析[J]. 南方农机, 2021, 52 (5): 58- 59
JIN He Application analysis of intelligent robot in agricultural automation field[J]. China Southern Agricultural Machinery, 2021, 52 (5): 58- 59
doi: 10.3969/j.issn.1672-3872.2021.05.023
6 陈子文, 杨明金, 李云伍, 等 基于气动无损夹持控制的番茄采摘末端执行器设计与试验[J]. 农业工程学报, 2021, 37 (2): 27- 35
CHEN Zi-wen, YANG Ming-jin, LI Yun-wu, et al Design and experiment of tomato picking end-effector based on non-destructive pneumatic clamping control[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (2): 27- 35
doi: 10.11975/j.issn.1002-6819.2021.2.004
7 吴剑桥, 范圣哲, 贡亮, 等 果蔬采摘机器手系统设计与控制技术研究现状和发展趋势[J]. 智慧农业(中英文), 2020, 2 (4): 17- 40
WU Jian-qiao, FAN Sheng-zhe, GONG Liang, et al Research status and development direction of design and control technology of fruit and vegetable picking robot system[J]. Smart Agriculture, 2020, 2 (4): 17- 40
8 LIN H, CAI K, CHEN H, et al Optimization design of fruit picking end-effector based on its grasping model[J]. Inmateh Agricultural Engineering, 2015, 47 (3): 81- 90
9 NIU Y Research state and trend of fruit picking robot manipulator structure[J]. International Journal of Plant Engineering and Management, 2020, 25 (1): 36- 50
10 KAPACH K, BARNEA E, MAIRON R, et al Computer vision for fruit harvesting robots: state of the art and challenges ahead[J]. International Journal of Computational Vision and Robotics, 2012, 3 (1/2): 4- 34
doi: 10.1504/IJCVR.2012.046419
11 张铁中, 杨丽, 陈兵旗, 等 农业机器人技术开展[J]. 中国科学: 信息科学, 2010, 40 (Suppl.1): 71- 87
ZHANG Tie-zong, YANG Li, CHEN Bing-qi, et al Research progress of agricultural robot technology[J]. Scientia Sinica: Informationis, 2010, 40 (Suppl.1): 71- 87
12 张凯良, 杨丽, 张铁中 草莓收获机器人末端执行器的设计[J]. 农机化研究, 2009, 31 (4): 54- 56
ZHANG Kai-liang, YANG Li, ZHANG Tie-zhong Design of an end-effector for strawberry harvesting robot[J]. Journal of Agricultural Mechanization Research, 2009, 31 (4): 54- 56
doi: 10.3969/j.issn.1003-188X.2009.04.016
13 HAYASHI S, SHIGEMATSU K, YAMAMOTO S, et al Evaluation of a strawberry-harvesting robot in a field test[J]. Biosystems Engineering, 2010, 105 (2): 160- 171
doi: 10.1016/j.biosystemseng.2009.09.011
14 纪超, 冯青春, 袁挺, 等 温室黄瓜采摘机器人系统研制及性能分析[J]. 机器人, 2011, 33 (6): 726- 730
FENG Chao, FENG Qing-chun, YUAN Ting, et al Development and performance analysis on cucumber harvesting robot system in greenhouse[J]. Robot, 2011, 33 (6): 726- 730
15 HAN K S, KIN S C, LEE Y B, et al Strawberry harvesting robot for bench-type cultivation[J]. Journal of Biosystems Engineering, 2012, 37 (1): 65- 74
doi: 10.5307/JBE.2012.37.1.065
16 DEIMEL R, BROCK O A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. The International Journal of Robotics Research, 2016, 35 (1-3): 161- 185
doi: 10.1177/0278364915592961
17 HUANG W, XIAO J, XU Z A variable structure pneumatic soft robot[J]. Scientific Reports, 2020, 10 (1): 18778
doi: 10.1038/s41598-020-75346-5
18 LOW J H, LEE W W, KHIN P M, et al Hybrid tele-manipulation system using a sensorized 3-D-printed soft robotic gripper and a soft fabric-based haptic glove[J]. IEEE Robotics and Automation Letters, 2017, 2 (2): 880- 887
doi: 10.1109/LRA.2017.2655559
19 POLYGERINOS P, CORRELL N, MORIN S A, et al Soft robotics: review of fluid ‐ driven intrinsically soft devices; manufacturing, sensing, control, and applications in human ‐ robot interaction[J]. Advanced Engineering Materials, 2017, 19 (12): 1700016
doi: 10.1002/adem.201700016
20 TAWK C, GILLETT A, PANHUIS M, et al A 3D-printed omni-purpose soft gripper[J]. IEEE Transactions on Robotics, 2019, 35 (5): 1268- 1275
doi: 10.1109/TRO.2019.2924386
21 MANTI M, HASSAN T, PASSETTI G, et al A bioinspired soft robotic gripper for adaptable and effective grasping[J]. Soft Robotics, 2015, 2 (3): 107- 116
doi: 10.1089/soro.2015.0009
22 LIU C H, CHIU C H. Optimal design of a soft robotic gripper with high mechanical advantage for grasping irregular objects [C]// 2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 2846-2851.
23 TONKENS S, LORENZETTI J, PAVONE M. Soft robot optimal control via reduced order finite element models [EB/OL]. [2021-06-11]. https://arxiv.org/pdf/2011.02092.pdf.
24 POLYGERINOS P, WANG Z, OVERVELDE J T B, et al Modeling of soft fiber-reinforced bending actuators[J]. IEEE Transactions on Robotics, 2015, 31 (3): 778- 789
doi: 10.1109/TRO.2015.2428504
25 席作岩. 基于气动软体驱动器的仿生爬行机器人研究[D]. 哈尔滨: 哈尔滨工程大学, 2017: 21.
XI Zuo-yan. Research on biomimetic crawling robot based on pneumatic soft actuator [D]. Harbin: Harbin Engineering University, 2017: 21.
[1] 李吉冬,钟莹,李醒飞. 磁流体动力学动量轮的致动特性和影响因素[J]. 浙江大学学报(工学版), 2021, 55(9): 1676-1683.
[2] 林苗,居勇健,孟刚,王琨,曹毅. 大行程两自由度微定位夹持系统的设计与优化[J]. 浙江大学学报(工学版), 2021, 55(7): 1234-1244.
[3] 郝天泽,肖华平,刘书海,张超,马豪. 集成化智能软体机器人研究进展[J]. 浙江大学学报(工学版), 2021, 55(2): 229-243.
[4] 王忠宇,王玲,王艳丽,吴兵. 基于网络变结构优化的大型活动交通拥堵预防方法[J]. 浙江大学学报(工学版), 2021, 55(2): 358-366.
[5] 黄凯,孙志坚,钱文瑛,杨继虎,俞自涛,胡亚才. 中间介质型烟气换热器无量纲材料成本模型[J]. 浙江大学学报(工学版), 2020, 54(7): 1362-1368.
[6] 喻伯平,李高华,谢亮,王福新. 基于代理模型的旋翼翼型动态失速优化设计[J]. 浙江大学学报(工学版), 2020, 54(4): 833-842.
[7] 张雷,张立华,王家序,李俊阳,肖科. 基于响应面的柔轮应力和刚度分析[J]. 浙江大学学报(工学版), 2019, 53(4): 638-644.
[8] 张鹏,刘晓健,张树有,裘乐淼,伊国栋. 稀疏混合不确定变量优化方法及应用[J]. 浙江大学学报(工学版), 2019, 53(3): 435-443.
[9] 费飞,刘申宇,吴常铖,杨德华,周升丽. 基于磁悬浮结构的人体动能采集技术[J]. 浙江大学学报(工学版), 2019, 53(11): 2215-2222.
[10] 刘国梁, 李新, 伍梁, 李振宇, 陈国柱. 宽范围输入输出电压LCC谐振变换器的分析设计[J]. 浙江大学学报(工学版), 2018, 52(9): 1762-1770.
[11] 宋伟, 姜红建, 王滔, 高振飞, 杜镇韬, 朱世强. 爬壁机器人磁吸附组件优化设计与试验研究[J]. 浙江大学学报(工学版), 2018, 52(10): 1837-1844.
[12] 唐伟佳, 江道灼, 尹瑞, 梁一桥, 王玉芬. 模块化隔离型直流变换器的同轴变压器设计[J]. 浙江大学学报(工学版), 2017, 51(8): 1646-1652.
[13] 张玄武, 郑耀, 杨波威, 张继发. 基于级联前向网络的翼型优化设计[J]. 浙江大学学报(工学版), 2017, 51(7): 1405-1411.
[14] 蒋卓华, 蒋焕煜, 童俊华. 穴盘苗自动移栽机末端执行器的优化设计[J]. 浙江大学学报(工学版), 2017, 51(6): 1119-1125.
[15] 田燕萍,金肖玲,王永. 强化现象启发的随机振动能量收集器优化设计[J]. 浙江大学学报(工学版), 2016, 50(5): 934-940.