Please wait a minute...
浙江大学学报(工学版)
机械工程     
强化现象启发的随机振动能量收集器优化设计
田燕萍,金肖玲,王永
1.杭州电子科技大学 机械工程学院,浙江 杭州 310018;2. 浙江大学 工程力学系,浙江 杭州 310027
Strengthening phenomenoninspirited optimum design of  random vibration energy harvester
TIAN Yan ping, JIN Xiao ling, WANG Yong
1.School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
2.Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1428 KB)   HTML
摘要:

为了使宽带振动能量收集器件的平均输出功率最大,以压电型随机振动能量收集器件为研究对象,系统讨论优化设计问题.通过建立器件随机响应与输出功率统计量的解析表达式,证实了平均输出功率的局部强化现象.讨论给定激励点位置时,压电片布置位置和压电片尺寸的优化,讨论最优尺寸随激励作用点和激励带宽的变化关系.研究表明:激励作用点及对称位置是布置压电片的较好位置,压电片的最优、次优、最差、次差位置相隔很近;为了得到最大的输出功率,压电片尺寸应略大于最优尺寸.

Abstract:

The optimum design of piezoelectrictype random vibration energy harvester was investigated  to acquire the maximum mean output power. The analytical formula for the statistics of random responses and output power were established. Then the local strengthening phenomenon of  mean output power were verified. For given excitation locations, the optimal locations and optimal length of piezoelectric patch were derived, and the relations of the optimal length to the excitation location and excitation bandwidth were discussed. Results show that the excitation  and its symmetry location are good places for piezoelectric patch. The optimal, suboptimal, worst and subworst locations of piezoelectric patch are very close. The length of piezoelectric patch should be slightly larger than the optimal design value in order to obtain the maximum output power.

出版日期: 2017-01-14
:  O 324  
基金资助:

国家自然科学基金资助项目(11302064, 11472240, 1153000141, 51405118);中央高校基本科研业务费(2016FZA4025).

通讯作者: 王永,男,副教授.ORCID: 0000000297413367.     E-mail: ypwang@zju.edu.cn
作者简介: 田燕萍(1983- ),女,讲师,从事结构动力学、智能材料与结构的等研究. ORCID: 0000000316849749. E-mail: tianyanp@sina.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

田燕萍,金肖玲,王永. 强化现象启发的随机振动能量收集器优化设计[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008973X.2016.05.017.

TIAN Yan ping, JIN Xiao ling, WANG Yong. Strengthening phenomenoninspirited optimum design of  random vibration energy harvester. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008973X.2016.05.017.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2016.05.017        http://www.zjujournals.com/eng/CN/Y2016/V50/I5/934

[1] BEEBY S P, TUDOR M J, WHITE N M. Energy harvesting vibration sources for microsystems applications [J]. Measurement Science and Technology, 2006, 17(12): R175-R195.
 [2] TANG L, YANG Y, SOH C K. Toward broadband vibrationbased energy harvesting [J]. Journal of Intelligent Material Systems and Structures, 2010, 21(18): 1867-1897.
 [3] DAQAH M F, MASANA R, ERTURK A, et al. On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion [J]. Applied Mechanics Reviews, 2014, 66(4): 040801.
 [4] ANTON S R, SODANO H A. A review of power harvesting using piezoelectric materials (20032006) [J]. Smart Materials and Structures, 2007, 16(3): R1-R21.
 [5] ARIDOGAN U, BASDOGAN I, ERTURK A. Analytical modeling and experimental validation of a structurally integrated piezoelectric energy harvester on a thin plate [J]. Smart Materials and Structures, 2014, 23(4): 045-039.
 [6] ARIDOGAN U, BASDOGAN I, ERTURK A. Multiple patchbased broadband piezoelectric energy harvesting on platebased structures [J]. Journal of Intelligent Material Systems and Structures, 2014, 25(14): 1664-1680.
 [7] ERTURK A, INMAN D J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations [J]. Smart Materials and Structures, 2009, 18(2): 025009.
 [8] ERTURK A, TARAZAGA P A, FARMER J R,et al. Effects of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams [J]. Journal of Vibration and Acoustics, 2009, 131(1): 011010.
 [9] RUPP C J, EVGRAFOV A, MAUTE K, et al. Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells [J]. Journal of Intelligent Material Systems and Structures, 2009, 20(16): 1923-1939.
 [10] FRISWELL M I, ADHIKARI S. Sensor shape design for piezoelectric cantilever beams to harvest vibration energy [J]. Journal of Applied Physics, 2010, 108(1): 014901.
 [11] WICKENHEISER A M. Design optimization of linear and nonlinear cantilevered energy harvesters for broadband vibration [J]. Journal of Intelligent Material Systems and Structures, 2011, 22(11): 1213-1225.
 [12] WANG Q, WU N. Optimal design of a piezoelectric coupled beam for power harvesting [J]. Smart Materials and Structures, 2012, 21(8): 085013.
 [13] ZHU D, TUDOR M J, BEEBY S P. Strategies for increasing the operating frequency range of vibration energy harvesters: a review [J]. Measurement Science and Technology, 2010: 21(2): 022001.
 [14] WICKENHEISER A M. Model reduction in stochastic vibration energy harvesting using compressive sampling [J]. Smart Materials and Structures, 2013, 22(9): 094029.
 [15] ZHAO S, ERTURK A. Electroelastic modeling and experimental validations of piezoelectric energy harvesting from broadband random vibration of cantilevered bimorphs [J]. Smart Materials and Structures, 2013, 22: 015002.
 [16] YANG J S. The Mechanics of Piezoelectric Structures [M]. New York: World Scientific, 2006: 22-34.
 [17] 朱位秋. 随机振动[M].北京:科学出版社,1994:179-201.

No related articles found!