Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (10): 1837-1844    DOI: 10.3785/j.issn.1008-973X.2018.10.001
机械与能源工程     
爬壁机器人磁吸附组件优化设计与试验研究
宋伟, 姜红建, 王滔, 高振飞, 杜镇韬, 朱世强
浙江大学 海洋电子与机器人研究所, 浙江 舟山 316021
Optimization design and experimental research on magnetic components for wall-climbing robot
SONG Wei, JIANG Hong-jian, WANG Tao, GAO Zhen-fei, DU Zhen-tao, ZHU Shi-qiang
Institute of Marine Electronics and Robotics, Zhejiang University, Zhoushan 316021, China
 全文: PDF(1399 KB)   HTML
摘要:

针对工业生产需求,以安全吸附和灵活行走为设计目标,提出可吸附在钢制结构物壁面作业的爬壁机器人.阐述爬壁机器人机械结构及相关的工作原理,分别论述磁吸附爬壁轮、清洗回收组件等子系统的结构原理;为了防止机器人发生滑移、倾覆,分析爬壁机器人不同的失稳形式,建立爬壁机器人的静力学模型,得到爬壁机器人抗失稳的磁吸附力;为了确保磁吸附组件的质量最小、磁吸附力最大,通过引入磁质比,分析结构参数对磁吸附组件性能的影响,得到最优的结构尺寸.通过实验获取磁吸附组件的吸力特性和爬壁机器人的负载、运动特性,验证磁吸附组件优化设计的可行性.

Abstract:

A wall-climbing robot which can be adsorbed on steel wall was proposed for industrial production needs in order to absorb safety and maneuverability. The mechanical structure and working principle of robot were described. The structures of magnetic wheels, cleaning and recycling components, which are the sub-systems of robot, were demonstrated respectively. Different forms of instabilities were analyzed to prevent the robot from slipping or overturning. Then the statics model of robot was established to obtain the magnetic adsorption force. The ratio of magnetic adsorption force to magnet mass of magnetic components was proposed in order to ensure that the mass of magnetic components is small and the magnetic adsorption force is great. Then the influence of parameters of the magnetic components on the magnetic adsorption force was deduced to get the optimal magnetic components. The performances of magnetic adsorption force of magnetic components load capacity and movement of wall-climbing robot were obtained. The design rationality of magnetic components was verified through experiments in the lab.

收稿日期: 2018-02-23 出版日期: 2018-10-11
CLC:  S972  
基金资助:

国家自然科学基金资助项目(61603332);中央高校基本科研业务费专项资金资助项目(2017XZZX001-02A);浙江省重点创新团队资助项目(2013TD14);舟山市校科技合作专项资助项目(2017C8221)

通讯作者: 王滔,男,讲师.orcid.org/0000-0002-5121-0599.     E-mail: twang001@126.com
作者简介: 宋伟(1984-),男,博士,讲师,从事爬壁作业机器人的研究.orcid.org/0000-0002-0828-7486.E-mail:weisong@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

宋伟, 姜红建, 王滔, 高振飞, 杜镇韬, 朱世强. 爬壁机器人磁吸附组件优化设计与试验研究[J]. 浙江大学学报(工学版), 2018, 52(10): 1837-1844.

SONG Wei, JIANG Hong-jian, WANG Tao, GAO Zhen-fei, DU Zhen-tao, ZHU Shi-qiang. Optimization design and experimental research on magnetic components for wall-climbing robot. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1837-1844.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.10.001        http://www.zjujournals.com/eng/CN/Y2018/V52/I10/1837

[1] OCHAN A. Robotics moves onwards and upwards[J]. Industrial Robot, 2003, 30(3):225-230.
[2] ELKMANN N, FELSCH T, SACK M, et al. Modular climbing robot for service-sector applications[J]. Industrial Robot, 1999, 26(6):460-465.
[3] 桂仲成, 陈强, 孙振国, 等. 爬壁机器人永磁吸附组件的优化设计[J]. 电工技术学报, 2006, 21(11):32-40 GUI Zhong-cheng, CHEN Qiang, SUN Zhen-guo, et al. Optimization of permanent-magnetic adhesion device for wall-climbing robot[J]. Transactions of China Electrotechnical Society, 2006, 21(11):32-40
[4] 陈勇, 王昌明, 包建东. 新型爬壁机器人磁吸附单元优化设计[J]. 兵工学报, 2012, 33(12):1539-1544 CHEN Yong, WANG Chang-ming, BAO Jian-dong. Optimization of a novel magnetic adsorption unit for wall-climbing robot[J]. Acta Armanentarii, 2012, 33(12):1539-1544
[5] 衣正尧. 用于搭载船舶除锈清洗器的爬壁机器人研究[D]. 大连:大连海事大学, 2010. YI Zheng-yao. Research on a wall climbing robot for boarding ship rust removal cleaner[D]. Dalian:Dalian Maritime University, 2010.
[6] 薛胜雄, 任启乐, 陈正文, 等. 磁隙式爬壁机器人的研制[J]. 机械工程学报, 2011, 47(21):37-42 XUE Sheng-xiong, REN Qi-le, CHEN Zheng-wen, et al. Design on magnetic gap adhesion typed crawler[J]. Journal of Mechanical Engineering, 2011, 47(21):37-42
[7] YAO P, LI D. The magnetic field analysis and optimization of permanent magnetic adhesion device for a novel wall climbing robot[C]//IEEE International Technology and Innovation Conference. Xi'an:IEEE, 2009:1-5.
[8] HU B. A miniature wall climbing robot with biomechanical suction cups[J]. Industrial Robot, 2009, 36(6):551-561.
[9] SHEN W, GU J, SHEN Y. Permanent magnetic system design for the wall-climbing robot[C]//IEEE International Conference on Mechatronics and Automation. Niagara Falls:IEEE, 2005:2078-2083.
[10] LI X, LI D, CHONG C. The study of magnetic circuit control technology for permanent magnet hump rail brake[C]//6th International Symposium on Instrumentation and Control Technology:Sensors, Automatic Measurement, Control, and Computer Simulation. Beijing:SPIE, 2006:635842-635848.
[11] KOCHAN A. Robotics moves onwards and upwards[J]. Industrial Robot, 2003, 30(3):225-230.
[12] WANG X, YI Z, GONG Y, et al. Ultra-high pressure water jetting removal rust model and analysis of removal rust capability[C]//The 7th International Conference on Fluid Power Transmission and Control. Hangzhou:ICFP, 2009:503-506.
[13] MANIERE E, SIMMONES R. Architecture, the backbone of robotic system[C]//2000 IEEE International Conference on Robotic and Automation. San Francisco:IEEE, 2000:505-513.
[14] YOSHIDA Y, TAKEIRI Y. The use of magnetic fields in a partial-coaxial microwave cavity a holey-plate ion source[J]. Review of Scientific Instruments, 2000, 71(1):66-69.
[15] 衣正尧, 弓永军, 王兴如, 等. 船舶除锈爬壁机器人设计方案研究[J]. 机床与液压, 2010, 38(7):65-72 YI Zheng-yao, GONG Yong-jun, WANG Xing-ru, et al. Research on design scheme of a wall climbing robot for rust removal[J]. Machine Tool and Hydraulics, 2010, 38(7):65-72
[16] 钟文定. 铁磁学[M]. 北京:科技出版社, 1987:463.
[17] 王峰. 水下船体表面清刷机器人磁吸附驱动装置的研究[D]. 哈尔滨:哈尔滨工程大学, 2003. WANG Feng. Research on underwater ship hull cleaning robot magnetic absorbing and driving technology[D]. Harbin:Harbin Engineering University, 2003.
[18] 王军波, 陈强, 孙振国. 爬壁机器人变磁力吸附单元的优化设计[J]. 清华大学学报:自然科学版, 2003, 43(2):214-217 WANG Jun-bo, CHEN Qiang, SUN Zhen-guo. Optimization of attracting devices with variable magnetic force for wall-climbing robots[J]. Journal of Tsinghua University:Science and Technology, 2003, 43(2):214-217
[19] HAM C, KO W, HAN Q. Analysis and optimization of a Maglev system based on the Halbach magnet arrays[J]. Journal of Applied Physics, 2006, 99(8):510-513.
[20] LIU J, CHOI H, WALMER M. Design of permanent magnet systems using finite element analysis[J]. International Journal of Iron and Steel Research, 2006, 13(supple.1):383-387.

No related articles found!