Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (9): 1676-1683    DOI: 10.3785/j.issn.1008-973X.2021.09.009
机械工程、能源工程     
磁流体动力学动量轮的致动特性和影响因素
李吉冬(),钟莹,李醒飞*()
天津大学 精密测试技术及仪器国家重点实验室,天津 300072
Actuating characteristics and influencing factors of magnetohydrodynamic momentum wheel
Ji-dong LI(),Ying ZHONG,Xing-fei LI*()
State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
 全文: PDF(1265 KB)   HTML
摘要:

结合不可压缩流体的纳维?斯托克斯方程和磁流体动力学基本方程,针对电流和电压控制模式下矩形截面环管内金属流体的哈脱曼流动问题建立完整的传递函数模型,深入分析流体中黏滞力项和边界层效应对动量轮输出性能的影响. 通过有限元仿真软件COMSOL对流体运动特性和流场分布进行仿真验证,分析电流、磁场和流体特征参数对动量轮输出指标的影响. 在电流控制模式下,动量轮的角动量输出标度因数约为9.68×10?5 N·m·s/A,可作为动量轮的设计与优化依据.

关键词: 磁流体动力学(MHD)动量轮哈脱曼流动有限元仿真纳维?斯托克斯方程    
Abstract:

Based on Navier-Stokes equations for incompressible fluids and magnetohydrodynamics (MHD) basic equations, a complete transfer function model for Hartmann flow of metallic fluid in a rectangular annular tube under current and voltage control mode were built up, and the effects of viscous force and boundary layer on the output performance of the momentum wheel were analyzed. By using the finite element simulation software COMSOL, the fluid motion characteristics and velocity distribution were simulated and verified. The influencing factors of output indexs, including current, magnetic field and characteristic parameters of the fluid, were totally analyzed. In current control mode, the angular momentum output scale factor of the momentum wheel is about 9.68×10-5 N·m·s/A, which can provide the basis for the design and optimization of the momentum wheel.

Key words: magnetohydrodynamic (MHD)    momentum wheel    Hartmann flow    finite element simulation    Navier-Stokes equation
收稿日期: 2020-08-31 出版日期: 2021-10-20
CLC:  TH 73  
基金资助: 国家自然科学基金重点项目(61733012);国家自然科学基金国家重大科研仪器研制项目(61427810)
通讯作者: 李醒飞     E-mail: lijidong1996@tju.edu.cn;lixftju@sina.com
作者简介: 李吉冬(1996—),男,硕士生,从事新型机电惯性器件研究. orcid.org/0000-0002-1635-3439. E-mail: lijidong1996@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李吉冬
钟莹
李醒飞

引用本文:

李吉冬,钟莹,李醒飞. 磁流体动力学动量轮的致动特性和影响因素[J]. 浙江大学学报(工学版), 2021, 55(9): 1676-1683.

Ji-dong LI,Ying ZHONG,Xing-fei LI. Actuating characteristics and influencing factors of magnetohydrodynamic momentum wheel. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1676-1683.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.09.009        https://www.zjujournals.com/eng/CN/Y2021/V55/I9/1676

图 1  MHD动量轮原理示意图
图 2  哈脱曼流动模型速度分布示意图
图 3  导电流体环截面示意图
图 4  简化后装配体截面图
材料类型 ρ/(103 kg·m?3 σ/(106 S·m?1 μ/(10?3 Pa·s) Br/T
钕铁硼N38 SH(磁钢) 7.5 0.76 —— 1.25
镓铟锡(流体) 6.57 3.27 2.16 ——
无氧铜(电极) 8.9 56.30 —— ——
铁镍合金(外壳) 8.2 2.20 —— ——
氧化铝(隔板、垫圈) 3.5 —— —— ——
表 1  组件材料参数
图 5  核心部件网格划分方案设计
图 6  流体切面流速分布示意图
图 7  仿真与理论流速随电流变化曲线
图 8  相对偏差随电流变化曲线
图 9  流速随磁感应强度变化曲线
图 10  相对偏差随磁场变化曲线
图 11  流速随电导率变化曲线
图 12  流速随动力黏度变化曲线
1 占剑锋. 微小惯性动量轮的结构设计与实验研究[D]. 长沙: 国防科学技术大学, 2012: 1-2.
ZHAN Jian-feng. Structure design and experimental research for micro inertia momentum wheel [D]. Changsha: National University of Defense Technology, 2012: 1-2.
2 CHEN Z M, LIU H Y, WANG H N, et al Attitude maneuver of micro-satellite using thruster plus bias momentum wheel[J]. Journal of Chinese Inertial Technology, 2011, 19 (5): 526- 532
3 MESUROLLE M, LEFEVRE Y, CASTERAS C Electric vector potential formulation to model a magnetohydrodynamic inertial actuator[J]. IEEE Transactions on Magnetics, 2016, 52 (3): 1- 4
4 KUMAR K D Satellite attitude stabilization using fluid rings[J]. Acta Mechanica, 2009, 208: 117- 131
doi: 10.1007/s00707-008-0132-5
5 HAVILAND R P. Orientation control for a space vehicle: U. S. Patent 2856142 [P]. 1958-10-14.
6 DAVIS L K. Sun pointing attitude control system employing fluid flywheels with novel momentum unloading means: U. S. Patent 3403258 [P]. 1968-09-24.
7 DAVIS L K. Angular stabilization device: U. S. Patent 3423613 [P]. 1969-01-21.
8 MAYNARD R S. Fluidic momentum controller: U. S. Patent 4776541 [P]. 1988-10-11.
9 LAUGHLIN D R. Magnetohydrodynamic (MHD) actuator sensor: U. S. Patent 7171853 [P]. 2007-02-06.
10 NOACK D, BRIEẞ K Laboratory investigation of a fluid-dynamic actuator designed for CubeSats[J]. Acta Astronautica, 2014, 96: 78- 82
doi: 10.1016/j.actaastro.2013.11.030
11 CASTERAS C, LEFEVRE Y, HARRIBEY D. Magneto- hydrodynamic inertial actuator: U. S. Patent 9994337 [P]. 2018−6−12.
12 MESUROLLE  M.  Modélisation  numérique  en  vue  de la conception d'un actionneur SCAO magneto-hydrodynamique de precision [D]. Institut National Polytechnique de Toulouse, 2015: 6–7.
MESUROLIE M. Numerical modeling for the design of a precision magnetohydrodynamic SCAO actuator [D]. National Polytechnic Institute of Toulouse, 2015: 6-7.
13 CURTI F. Magneto-hydro-dynamics liquid wheel actuator for spacecraft attitude control: AFRL-AFOSR-UK-TR-2017-0004 [R]. Roma: Sapienza University of Rome, 2017.
14 王志远. 基于微型动量轮组的皮纳卫星姿态控制系统研究[D]. 杭州: 浙江大学, 2017: 51-52.
WANG Zhi-yuan. Research on the attitude control system for nano-satellites based on micro-reaction wheels units [D]. Hangzhou: Zhejiang University, 2017: 51-52.
15 吴启东. 微小卫星动量轮设计[D]. 南京: 南京理工大学, 2017: 53-54.
WU Qi-dong. Design of micro-satellite momentum wheel [D]. Nanjing: Nanjing University of Science and Technology, 2017: 53-54.
16 程旭. 基于电磁效应的电磁流体环的设计与研究[D]. 上海: 上海交通大学, 2018: 72-73.
CHENG Xu. Design and research of electromagnetic fluid ring based on electromagnetic effect [D]. shanghai: Shanghai Jiaotong University, 2018: 72-73.
17 BAYLIS J A Experiments on laminar flow in curved channels of square section[J]. Journal of Fluid Mechanics, 1971, 48 (3): 417- 422
doi: 10.1017/S0022112071001678
18 MOLOKOV S, MOREAU R. Magnetohydrodynamics: historical evolution and trends [M]. Dordrecht: Springer, 2007.
19 SHERCLIFF J A. Steady motion of conducting fluids in pipes under transverse magnetic fields [C]// Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge: Cambridge University Press, 1953, 49(1): 136-144.
20 HUNT J C R, SHERCLIFF J A Magnetohydrodynamics at high Hartmann number[J]. Annual Review of Fluid Mechanics, 1971, 3 (1): 37- 62
doi: 10.1146/annurev.fl.03.010171.000345
21 BAYLIS J A, HUNT J C R MHD flow in an annular channel; theory and experiment[J]. Journal of Fluid Mechanics, 1971, 48 (3): 423- 428
doi: 10.1017/S002211207100168X
22 SUBRAMANIAN S, SWAIN P K, DESHPANDE A V, et al Effect of Hartmann layer resolution for MHD flow in a straight, conducting duct at high Hartmann numbers[J]. Sādhanā:Academy Proceedings in Engineering Science, 2015, 40 (3): 851- 861
23 KRASNOV D S, ZIENICKE E, ZIKANOV O, et al Numerical study of the instability of the Hartmann layer[J]. Journal of Fluid Mechanics, 2004, 504: 183- 211
doi: 10.1017/S0022112004008006
24 SHERCLIFF J A The current-content of Hartmann layers[J]. Journal of Applied Mathematics and Physics, 1977, 28 (3): 449- 466
25 CHEN S H. Fundamentals of the finite element method [M]// CHEN S H. Computational Geomechanics and Hydraulic Structures. Singapore: Springer, 2019: 241-314.
26 闫丽丽, 支绍韬, 郭磊, 等 曲折型微机电正交磁通门传感器有限元仿真分析[J]. 传感技术学报, 2019, 32 (1): 67- 70
YAN Li-li, ZHI Shao-tao, GUO Lei, et al Finite element simulation analysis of meandering micro-electro-mechanical orthogonal fluxgate sensors[J]. Chinese Journal of Sensors and Actuators, 2019, 32 (1): 67- 70
doi: 10.3969/j.issn.1004-1699.2019.01.012
[1] 林苗,居勇健,孟刚,王琨,曹毅. 大行程两自由度微定位夹持系统的设计与优化[J]. 浙江大学学报(工学版), 2021, 55(7): 1234-1244.
[2] 费飞,刘申宇,吴常铖,杨德华,周升丽. 基于磁悬浮结构的人体动能采集技术[J]. 浙江大学学报(工学版), 2019, 53(11): 2215-2222.
[3] 曲巍崴, 石鑫, 董辉跃, 封璞加, 朱灵盛, 柯映林. 气动锤铆过程仿真分析与试验[J]. 浙江大学学报(工学版), 2014, 48(8): 1411-1418.
[4] 向甜,王昊,蒙涛,韩柯,金仲和. 基于纯磁控的皮卫星姿态恢复[J]. J4, 2013, 47(5): 843-852.
[5] 张雷, 邬义杰, 王彬, 刘孝亮. 基于正交建模的空间柔顺构件多目标优化[J]. J4, 2012, 46(8): 1419-1423.
[6] 韩柯, 王昊, 朱小丰, 向甜, 金仲和. 皮卫星偏置动量轮在轨备份切换策略[J]. J4, 2011, 45(10): 1771-1776.
[7] 袁平 柯映林 董辉跃. 基于次摆线轨迹的铝合金高速铣削有限元仿真[J]. J4, 2009, 43(3): 570-577.