机械工程、能源工程 |
|
|
|
|
磁流体动力学动量轮的致动特性和影响因素 |
李吉冬( ),钟莹,李醒飞*( ) |
天津大学 精密测试技术及仪器国家重点实验室,天津 300072 |
|
Actuating characteristics and influencing factors of magnetohydrodynamic momentum wheel |
Ji-dong LI( ),Ying ZHONG,Xing-fei LI*( ) |
State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China |
1 |
占剑锋. 微小惯性动量轮的结构设计与实验研究[D]. 长沙: 国防科学技术大学, 2012: 1-2. ZHAN Jian-feng. Structure design and experimental research for micro inertia momentum wheel [D]. Changsha: National University of Defense Technology, 2012: 1-2.
|
2 |
CHEN Z M, LIU H Y, WANG H N, et al Attitude maneuver of micro-satellite using thruster plus bias momentum wheel[J]. Journal of Chinese Inertial Technology, 2011, 19 (5): 526- 532
|
3 |
MESUROLLE M, LEFEVRE Y, CASTERAS C Electric vector potential formulation to model a magnetohydrodynamic inertial actuator[J]. IEEE Transactions on Magnetics, 2016, 52 (3): 1- 4
|
4 |
KUMAR K D Satellite attitude stabilization using fluid rings[J]. Acta Mechanica, 2009, 208: 117- 131
doi: 10.1007/s00707-008-0132-5
|
5 |
HAVILAND R P. Orientation control for a space vehicle: U. S. Patent 2856142 [P]. 1958-10-14.
|
6 |
DAVIS L K. Sun pointing attitude control system employing fluid flywheels with novel momentum unloading means: U. S. Patent 3403258 [P]. 1968-09-24.
|
7 |
DAVIS L K. Angular stabilization device: U. S. Patent 3423613 [P]. 1969-01-21.
|
8 |
MAYNARD R S. Fluidic momentum controller: U. S. Patent 4776541 [P]. 1988-10-11.
|
9 |
LAUGHLIN D R. Magnetohydrodynamic (MHD) actuator sensor: U. S. Patent 7171853 [P]. 2007-02-06.
|
10 |
NOACK D, BRIEẞ K Laboratory investigation of a fluid-dynamic actuator designed for CubeSats[J]. Acta Astronautica, 2014, 96: 78- 82
doi: 10.1016/j.actaastro.2013.11.030
|
11 |
CASTERAS C, LEFEVRE Y, HARRIBEY D. Magneto- hydrodynamic inertial actuator: U. S. Patent 9994337 [P]. 2018−6−12.
|
12 |
MESUROLLE M. Modélisation numérique en vue de la conception d'un actionneur SCAO magneto-hydrodynamique de precision [D]. Institut National Polytechnique de Toulouse, 2015: 6–7. MESUROLIE M. Numerical modeling for the design of a precision magnetohydrodynamic SCAO actuator [D]. National Polytechnic Institute of Toulouse, 2015: 6-7.
|
13 |
CURTI F. Magneto-hydro-dynamics liquid wheel actuator for spacecraft attitude control: AFRL-AFOSR-UK-TR-2017-0004 [R]. Roma: Sapienza University of Rome, 2017.
|
14 |
王志远. 基于微型动量轮组的皮纳卫星姿态控制系统研究[D]. 杭州: 浙江大学, 2017: 51-52. WANG Zhi-yuan. Research on the attitude control system for nano-satellites based on micro-reaction wheels units [D]. Hangzhou: Zhejiang University, 2017: 51-52.
|
15 |
吴启东. 微小卫星动量轮设计[D]. 南京: 南京理工大学, 2017: 53-54. WU Qi-dong. Design of micro-satellite momentum wheel [D]. Nanjing: Nanjing University of Science and Technology, 2017: 53-54.
|
16 |
程旭. 基于电磁效应的电磁流体环的设计与研究[D]. 上海: 上海交通大学, 2018: 72-73. CHENG Xu. Design and research of electromagnetic fluid ring based on electromagnetic effect [D]. shanghai: Shanghai Jiaotong University, 2018: 72-73.
|
17 |
BAYLIS J A Experiments on laminar flow in curved channels of square section[J]. Journal of Fluid Mechanics, 1971, 48 (3): 417- 422
doi: 10.1017/S0022112071001678
|
18 |
MOLOKOV S, MOREAU R. Magnetohydrodynamics: historical evolution and trends [M]. Dordrecht: Springer, 2007.
|
19 |
SHERCLIFF J A. Steady motion of conducting fluids in pipes under transverse magnetic fields [C]// Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge: Cambridge University Press, 1953, 49(1): 136-144.
|
20 |
HUNT J C R, SHERCLIFF J A Magnetohydrodynamics at high Hartmann number[J]. Annual Review of Fluid Mechanics, 1971, 3 (1): 37- 62
doi: 10.1146/annurev.fl.03.010171.000345
|
21 |
BAYLIS J A, HUNT J C R MHD flow in an annular channel; theory and experiment[J]. Journal of Fluid Mechanics, 1971, 48 (3): 423- 428
doi: 10.1017/S002211207100168X
|
22 |
SUBRAMANIAN S, SWAIN P K, DESHPANDE A V, et al Effect of Hartmann layer resolution for MHD flow in a straight, conducting duct at high Hartmann numbers[J]. Sādhanā:Academy Proceedings in Engineering Science, 2015, 40 (3): 851- 861
|
23 |
KRASNOV D S, ZIENICKE E, ZIKANOV O, et al Numerical study of the instability of the Hartmann layer[J]. Journal of Fluid Mechanics, 2004, 504: 183- 211
doi: 10.1017/S0022112004008006
|
24 |
SHERCLIFF J A The current-content of Hartmann layers[J]. Journal of Applied Mathematics and Physics, 1977, 28 (3): 449- 466
|
25 |
CHEN S H. Fundamentals of the finite element method [M]// CHEN S H. Computational Geomechanics and Hydraulic Structures. Singapore: Springer, 2019: 241-314.
|
26 |
闫丽丽, 支绍韬, 郭磊, 等 曲折型微机电正交磁通门传感器有限元仿真分析[J]. 传感技术学报, 2019, 32 (1): 67- 70 YAN Li-li, ZHI Shao-tao, GUO Lei, et al Finite element simulation analysis of meandering micro-electro-mechanical orthogonal fluxgate sensors[J]. Chinese Journal of Sensors and Actuators, 2019, 32 (1): 67- 70
doi: 10.3969/j.issn.1004-1699.2019.01.012
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|