机械工程 |
|
|
|
|
大行程两自由度微定位夹持系统的设计与优化 |
林苗1,2( ),居勇健1,2,孟刚1,2,王琨1,2,*( ),曹毅1,2 |
1. 江南大学 机械工程学院,江苏 无锡 214122 2. 江南大学 江苏省食品先进制造装备技术重点实验室,江苏 无锡 214122 |
|
Design and optimization of large range 2-DOF micro-positioning clamping system |
Miao LIN1,2( ),Yong-jian JU1,2,Gang MENG1,2,Kun WANG1,2,*( ),Yi CAO1,2 |
1. School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China 2. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China |
引用本文:
林苗,居勇健,孟刚,王琨,曹毅. 大行程两自由度微定位夹持系统的设计与优化[J]. 浙江大学学报(工学版), 2021, 55(7): 1234-1244.
Miao LIN,Yong-jian JU,Gang MENG,Kun WANG,Yi CAO. Design and optimization of large range 2-DOF micro-positioning clamping system. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1234-1244.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.07.002
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I7/1234
|
1 |
林超, 陶友淘, 程凯, 等 微/纳传动平台的位移耦合分析[J]. 浙江大学学报: 工学版, 2013, 47 (4): 720- 727 LIN Chao, TAO You-tao, CHENG Kai, et al Displacement coupling analysis of micro/nano transmission platform[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (4): 720- 727
doi: 10.3785/j.issn.1008-973X.2013.04.024
|
2 |
马立, 荣伟彬, 孙立宁, 等 面向光学精密装配的微操作机器人[J]. 机械工程学报, 2009, 45 (2): 280- 247 MA Li, Rong Wei-bin, SUN Lin-ing, et al Micro operation robot for optical precise assembly[J]. Journal of Mechanical Engineering, 2009, 45 (2): 280- 247
doi: 10.3901/JME.2009.02.280
|
3 |
ÖZKALE B, PARREIRA R, BEKDEMIR A, et al Modular soft robotic microdevices for dexterous biomanipulation[J]. Lab on a Chip, 2019, 19 (5): 778- 788
doi: 10.1039/C8LC01200H
|
4 |
吴高华, 杨依领, 李国平, 等 具有高位移增幅特性的柔顺并联式x-y-θ微动平台 [J]. 机器人, 2020, 42 (1): 1- 9 WU Gao-hua, YANG Yi-ling, LI Guo-ping, et al A parallel compliant x-y-θ micro-stage with the characteristic of high displacement magnification [J]. Robot, 2020, 42 (1): 1- 9
|
5 |
ZHANG J B, LU K K, CHEN W H, et al Monolithically integrated two-axis microgripper for polarization maintaining in optical fiber assembly[J]. Review of Scientific Instruments, 2015, 86 (2): 025105
doi: 10.1063/1.4907551
|
6 |
于靖军, 郝广波, 陈贵敏, 等 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51 (13): 53- 68 YU Jing-jun, HAO Guang-bo, CHEN Gui-min, et al State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51 (13): 53- 68
doi: 10.3901/JME.2015.13.053
|
7 |
林超, 李坪洋, 沈忠磊, 等 压电驱动微夹持器特性分析[J]. 仪器仪表学报, 2019, 40 (7): 224- 232 Lin Chao, Li Ping-yang, Shen Zhong-lei, et al Characteristic analysis of the microgripper driven by piezoelectric actuators[J]. Chinese Journal of Scientific Instrument, 2019, 40 (7): 224- 232
|
8 |
HAO G B, HAND R B Design and static testing of a compact distributed-compliance gripper based on flexure motion[J]. Archives of Civil and Mechanical Engineering, 2016, 16 (4): 708- 716
doi: 10.1016/j.acme.2016.04.011
|
9 |
MASOOD M U, SALEEM M M, KHAN U S, et al Design, closed-form modeling and analysis of SU-8 based electrothermal microgripper for biomedical applications[J]. Microsystem Technologies, 2019, 25 (4): 1171- 1184
doi: 10.1007/s00542-018-4059-z
|
10 |
YANG S, XU Q Design and analysis of a decoupled XY MEMS microgripper with integrated dual-axis actuation and force sensing[J]. IFAC-Papers Online, 2017, 50 (1): 808- 813
doi: 10.1016/j.ifacol.2017.08.144
|
11 |
OWUSU-DANQUAH J S, SALEEB A F, NATSHEH S H Performance of a two-way shape memory microgripper actuator[J]. Journal of Aerospace Engineering, 2018, 31 (4): 04018040
doi: 10.1061/(ASCE)AS.1943-5525.0000857
|
12 |
HAO G B, ZHU J X Design of a monolithic double-slider based compliant gripper with large displacement and anti-buckling ability[J]. Micromachines, 2019, 10 (10): 1277- 1296
|
13 |
CHEN X D, HU S Y, DENG Z L, et al Design of large-displacement asymmetric piezoelectric microgripper based on flexible mechanisms[J]. Nanotechnology and Precision Engineering, 2019, 2 (4): 188- 193
doi: 10.1016/j.npe.2019.11.001
|
14 |
吴志刚, 陈敏 压电精密驱动柔性微夹钳设计[J]. 光学精密工程, 2020, 28 (2): 398- 404 WU Zhi-gan, CHEN Min Design of flexure micro-gripper precision-driven by piezoceramics[J]. Optics and Precision Engineering, 2020, 28 (2): 398- 404
|
15 |
林盛隆, 张宪民, 朱本亮 高带宽两自由度并联柔顺精密定位平台的优化设计与实验[J]. 光学精密工程, 2019, 27 (8): 1774- 1782 LIN Sheng-long, ZHANG Xian-min, ZHU Ben-liang, et al Optimal design and experiment of a high-bandwidth two-degree-of-freedom parallel nanopositioning stage[J]. Optics and Precision Engineering, 2019, 27 (8): 1774- 1782
doi: 10.3788/OPE.20192708.1774
|
16 |
AWTAR S, PARMAR G Design of a large range XY nanopositioning system[J]. Journal of Mechanisms and Robotics, 2013, 5 (2): 021008
doi: 10.1115/1.4023874
|
17 |
田延岭, 包亚洲, 王福军, 等 音圈电机驱动的柔性定位平台设计与控制[J]. 天津大学学报: 自然科学与工程技术版, 2017, 50 (10): 1070- 1076 TIAN Yan-ling, BAO Ya-zhou WANG Fu-jun, et al Design and control of a flexible positioning stage driven by voice coil motors[J]. Journal of Tianjin University: Science and Technology, 2017, 50 (10): 1070- 1076
|
18 |
HOPKINS J B, CULPEPPER M L Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT) part I: principles[J]. Precision Engineering, 2010, 34 (2): 259- 270
doi: 10.1016/j.precisioneng.2009.06.008
|
19 |
HOPKINS J B, CULPEPPER M L Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT) part II: practice[J]. Precision Engineering, 2010, 34 (2): 271- 278
doi: 10.1016/j.precisioneng.2009.06.007
|
20 |
曹毅, 王保兴, 刘俊辰, 等. 高精度大行程大有效台面空间平动精密定位平台: CN110211627A[P]. 2019-09-06.
|
21 |
王保兴, 孟刚, 林苗, 等 3-PPP型柔性并联微定位平台的设计与分析[J]. 北京航空航天大学学报, 2020, 46 (4): 798- 807 WANG Bao-xing, MENG Gang, LIN Miao, et al Design and analysis of a 3-PPP compliant parallel micro-positioning stage[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (4): 798- 807
|
22 |
杨志军, 白有盾, 陈新, 等 基于应力刚化效应的动态特性可调微动平台设计新方法[J]. 机械工程学报, 2015, 51 (23): 153- 159 YANG Zhi-jun, BAI You-dun, CHEN Xin, et al A new design method of dynamic characteristics adjustable micro motion stage based on tension stiffening[J]. Journal of Mechanical Engineering, 2015, 51 (23): 153- 159
doi: 10.3901/JME.2015.23.153
|
23 |
YU J J, LI S Z, SU H J, et al Screw theory based methodology for the deterministic type synthesis of flexure mechanisms[J]. Journal of Mechanisms and Robotics, 2013, 3 (3): 1194- 1204
|
24 |
LI Y M, WU Z G Design, analysis and simulation of a novel 3-DOF translational micromanipulator based on the PRB model[J]. Mechanism and Machine Theory, 2016, 100 (2): 235- 258
|
25 |
HERPE X, WALKER R, DUNNIGAN M, et al On a simplified nonlinear analytical model for the characterisation and design optimisation of a compliant XY micro-motion stage[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49: 66- 76
doi: 10.1016/j.rcim.2017.05.012
|
26 |
HOWELL L L. Compliant Mechanisms [M]. New York: John Wiley and Sons, 2001: 302.
|
27 |
KIM J H, KIM S H, KWAK Y K Development of a piezoelectric actuator using a three-dimensional bridge-type hinge mechanism[J]. Review of Scientific Instruments, 2003, 74 (5): 2918- 2924
doi: 10.1063/1.1569411
|
28 |
XU Q S, LI Y M Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier[J]. Mechanism and Machine Theory, 2016, 46 (2): 183- 200
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|