Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (7): 1234-1244    DOI: 10.3785/j.issn.1008-973X.2021.07.002
机械工程     
大行程两自由度微定位夹持系统的设计与优化
林苗1,2(),居勇健1,2,孟刚1,2,王琨1,2,*(),曹毅1,2
1. 江南大学 机械工程学院,江苏 无锡 214122
2. 江南大学 江苏省食品先进制造装备技术重点实验室,江苏 无锡 214122
Design and optimization of large range 2-DOF micro-positioning clamping system
Miao LIN1,2(),Yong-jian JU1,2,Gang MENG1,2,Kun WANG1,2,*(),Yi CAO1,2
1. School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
2. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
 全文: PDF(2076 KB)   HTML
摘要:

为了实现微操作系统中微夹持器的精密定位,增加其可达定位空间,提出大行程两自由度微定位夹持系统. 基于2移1转(2T1R)型柔性运动副,设计两自由度微定位平台,并将其与微夹持器相结合,设计微定位夹持系统的结构;采用简化的线弹性梁模型建立微定位平台力?位移关系、丢失运动和固有频率的理论模型,并采用欧拉?伯努利梁模型与能量守恒定律建立微夹持器力?位移关系、位移放大倍率和固有频率的理论模型;以提高微定位夹持系统的静、动态性能为目标进行参数优化;通过有限元仿真验证理论模型的正确性,并给出微夹持器的可达定位空间. 结果表明,微定位夹持系统设计具备有效性与可行性.

关键词: 微操作系统柔顺机构定位空间参数优化有限元仿真    
Abstract:

A new 2-DOF micro-positioning clamping system with large range was proposed in order to realize the precise positioning and increase the reachable positioning space of the micro-gripper in the micro-operating system. Firstly, a 2-DOF micro-positioning platform was designed based on the 2 translation and 1 rotation (2T1R) type compliant motion pair, and the structure of micro-positioning clamping system was designed by combining it with a micro-gripper. Secondly, the theoretical models of force-displacement relationship, lost motion and natural frequency of micro-positioning platform were deduced by the simplified linear elastic beam model, and the theoretical models of force-displacement relationship, displacement amplification ratio and natural frequency of micro-gripper were deduced by the Euler-Bernoulli beam model and the law of conservation of energy. Then, the parameters of the micro-positioning clamping system were optimized for the improvements of its static and dynamic performance. Finally, the correctness of the theoretical model was verified by finite element simulation, and the reachable positioning space of the micro-gripper was given. Results show that the design of micro-positioning clamping system is effective and feasible.

Key words: micro-operating system    compliant mechanism    positioning space    parameter optimization    finite element simulation
收稿日期: 2020-07-20 出版日期: 2021-07-05
CLC:  TH 122  
基金资助: 高等学校学科创新引智计划资助项目(B18027);江苏省“六大人才高峰”计划资助项目(ZBZZ-012);江苏省高校优秀科技创新团队基金资助项目(2019SJK07);江苏省研究生科研与实践创新计划资助项目(JSCX20_0760);江南大学研究生科研与实践创新计划资助项目(JNSJ19_005)
通讯作者: 王琨     E-mail: 2729423602@qq.com;wangkun0808@126.com
作者简介: 林苗(1997—),男,硕士生,从事柔顺机构学研究. orcid.org/0000-0001-7660-4431. E-mail: 2729423602@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
林苗
居勇健
孟刚
王琨
曹毅

引用本文:

林苗,居勇健,孟刚,王琨,曹毅. 大行程两自由度微定位夹持系统的设计与优化[J]. 浙江大学学报(工学版), 2021, 55(7): 1234-1244.

Miao LIN,Yong-jian JU,Gang MENG,Kun WANG,Yi CAO. Design and optimization of large range 2-DOF micro-positioning clamping system. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1234-1244.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.07.002        https://www.zjujournals.com/eng/CN/Y2021/V55/I7/1234

图 1  2T1R型柔性运动副
图 2  大行程两自由度微定位平台结构示意图
图 3  平台支链一结构示意图
图 4  微夹持器结构示意图
图 5  柔性末端结构示意图
图 6  微定位夹持系统结构示意图
图 7  平台支链一尺寸示意图
图 8  平台沿x轴方向驱动示意图
图 9  支链一中被动副受力分析图
图 10  支链一中细长杆e2应力分析图
图 11  微夹持器单侧结构示意图
图 12  桥式机构受力分析图
参数 数值/mm 参数 数值/mm
l1 26 h1 0.4
t1 0.55 L1 1.5
l2 22.19 L2 11.78
t2 0.8 w 1.3
表 1  微定位夹持系统的结构参数
特征参数 优化前 优化后 优化率/%
fp 40.84 Hz 51.16 Hz 25.3
fg 292.81 Hz 346.27 Hz 18.3
δlost 5.16 μm 3.86 μm ?25.2
Ramp 15.22 19.61 28.8
表 2  优化前后微定位夹持系统的静、动态特性
图 13  微定位平台x轴方向的静态性能有限元仿真
图 14  微定位平台x轴方向静态性能验证
图 15  微定位平台应力云图
图 16  微定位平台输入输出耦合仿真
图 17  微夹持器的静态性能有限元仿真
图 18  微夹持器静态性能验证
图 19  微夹持器的1~3阶模态振型
图 20  微定位平台的前4阶模态振型
图 21  微夹持器的可达工作空间
1 林超, 陶友淘, 程凯, 等 微/纳传动平台的位移耦合分析[J]. 浙江大学学报: 工学版, 2013, 47 (4): 720- 727
LIN Chao, TAO You-tao, CHENG Kai, et al Displacement coupling analysis of micro/nano transmission platform[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (4): 720- 727
doi: 10.3785/j.issn.1008-973X.2013.04.024
2 马立, 荣伟彬, 孙立宁, 等 面向光学精密装配的微操作机器人[J]. 机械工程学报, 2009, 45 (2): 280- 247
MA Li, Rong Wei-bin, SUN Lin-ing, et al Micro operation robot for optical precise assembly[J]. Journal of Mechanical Engineering, 2009, 45 (2): 280- 247
doi: 10.3901/JME.2009.02.280
3 ÖZKALE B, PARREIRA R, BEKDEMIR A, et al Modular soft robotic microdevices for dexterous biomanipulation[J]. Lab on a Chip, 2019, 19 (5): 778- 788
doi: 10.1039/C8LC01200H
4 吴高华, 杨依领, 李国平, 等 具有高位移增幅特性的柔顺并联式x-y-θ微动平台 [J]. 机器人, 2020, 42 (1): 1- 9
WU Gao-hua, YANG Yi-ling, LI Guo-ping, et al A parallel compliant x-y-θ micro-stage with the characteristic of high displacement magnification [J]. Robot, 2020, 42 (1): 1- 9
5 ZHANG J B, LU K K, CHEN W H, et al Monolithically integrated two-axis microgripper for polarization maintaining in optical fiber assembly[J]. Review of Scientific Instruments, 2015, 86 (2): 025105
doi: 10.1063/1.4907551
6 于靖军, 郝广波, 陈贵敏, 等 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51 (13): 53- 68
YU Jing-jun, HAO Guang-bo, CHEN Gui-min, et al State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51 (13): 53- 68
doi: 10.3901/JME.2015.13.053
7 林超, 李坪洋, 沈忠磊, 等 压电驱动微夹持器特性分析[J]. 仪器仪表学报, 2019, 40 (7): 224- 232
Lin Chao, Li Ping-yang, Shen Zhong-lei, et al Characteristic analysis of the microgripper driven by piezoelectric actuators[J]. Chinese Journal of Scientific Instrument, 2019, 40 (7): 224- 232
8 HAO G B, HAND R B Design and static testing of a compact distributed-compliance gripper based on flexure motion[J]. Archives of Civil and Mechanical Engineering, 2016, 16 (4): 708- 716
doi: 10.1016/j.acme.2016.04.011
9 MASOOD M U, SALEEM M M, KHAN U S, et al Design, closed-form modeling and analysis of SU-8 based electrothermal microgripper for biomedical applications[J]. Microsystem Technologies, 2019, 25 (4): 1171- 1184
doi: 10.1007/s00542-018-4059-z
10 YANG S, XU Q Design and analysis of a decoupled XY MEMS microgripper with integrated dual-axis actuation and force sensing[J]. IFAC-Papers Online, 2017, 50 (1): 808- 813
doi: 10.1016/j.ifacol.2017.08.144
11 OWUSU-DANQUAH J S, SALEEB A F, NATSHEH S H Performance of a two-way shape memory microgripper actuator[J]. Journal of Aerospace Engineering, 2018, 31 (4): 04018040
doi: 10.1061/(ASCE)AS.1943-5525.0000857
12 HAO G B, ZHU J X Design of a monolithic double-slider based compliant gripper with large displacement and anti-buckling ability[J]. Micromachines, 2019, 10 (10): 1277- 1296
13 CHEN X D, HU S Y, DENG Z L, et al Design of large-displacement asymmetric piezoelectric microgripper based on flexible mechanisms[J]. Nanotechnology and Precision Engineering, 2019, 2 (4): 188- 193
doi: 10.1016/j.npe.2019.11.001
14 吴志刚, 陈敏 压电精密驱动柔性微夹钳设计[J]. 光学精密工程, 2020, 28 (2): 398- 404
WU Zhi-gan, CHEN Min Design of flexure micro-gripper precision-driven by piezoceramics[J]. Optics and Precision Engineering, 2020, 28 (2): 398- 404
15 林盛隆, 张宪民, 朱本亮 高带宽两自由度并联柔顺精密定位平台的优化设计与实验[J]. 光学精密工程, 2019, 27 (8): 1774- 1782
LIN Sheng-long, ZHANG Xian-min, ZHU Ben-liang, et al Optimal design and experiment of a high-bandwidth two-degree-of-freedom parallel nanopositioning stage[J]. Optics and Precision Engineering, 2019, 27 (8): 1774- 1782
doi: 10.3788/OPE.20192708.1774
16 AWTAR S, PARMAR G Design of a large range XY nanopositioning system[J]. Journal of Mechanisms and Robotics, 2013, 5 (2): 021008
doi: 10.1115/1.4023874
17 田延岭, 包亚洲, 王福军, 等 音圈电机驱动的柔性定位平台设计与控制[J]. 天津大学学报: 自然科学与工程技术版, 2017, 50 (10): 1070- 1076
TIAN Yan-ling, BAO Ya-zhou WANG Fu-jun, et al Design and control of a flexible positioning stage driven by voice coil motors[J]. Journal of Tianjin University: Science and Technology, 2017, 50 (10): 1070- 1076
18 HOPKINS J B, CULPEPPER M L Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT) part I: principles[J]. Precision Engineering, 2010, 34 (2): 259- 270
doi: 10.1016/j.precisioneng.2009.06.008
19 HOPKINS J B, CULPEPPER M L Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT) part II: practice[J]. Precision Engineering, 2010, 34 (2): 271- 278
doi: 10.1016/j.precisioneng.2009.06.007
20 曹毅, 王保兴, 刘俊辰, 等. 高精度大行程大有效台面空间平动精密定位平台: CN110211627A[P]. 2019-09-06.
21 王保兴, 孟刚, 林苗, 等 3-PPP型柔性并联微定位平台的设计与分析[J]. 北京航空航天大学学报, 2020, 46 (4): 798- 807
WANG Bao-xing, MENG Gang, LIN Miao, et al Design and analysis of a 3-PPP compliant parallel micro-positioning stage[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (4): 798- 807
22 杨志军, 白有盾, 陈新, 等 基于应力刚化效应的动态特性可调微动平台设计新方法[J]. 机械工程学报, 2015, 51 (23): 153- 159
YANG Zhi-jun, BAI You-dun, CHEN Xin, et al A new design method of dynamic characteristics adjustable micro motion stage based on tension stiffening[J]. Journal of Mechanical Engineering, 2015, 51 (23): 153- 159
doi: 10.3901/JME.2015.23.153
23 YU J J, LI S Z, SU H J, et al Screw theory based methodology for the deterministic type synthesis of flexure mechanisms[J]. Journal of Mechanisms and Robotics, 2013, 3 (3): 1194- 1204
24 LI Y M, WU Z G Design, analysis and simulation of a novel 3-DOF translational micromanipulator based on the PRB model[J]. Mechanism and Machine Theory, 2016, 100 (2): 235- 258
25 HERPE X, WALKER R, DUNNIGAN M, et al On a simplified nonlinear analytical model for the characterisation and design optimisation of a compliant XY micro-motion stage[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49: 66- 76
doi: 10.1016/j.rcim.2017.05.012
26 HOWELL L L. Compliant Mechanisms [M]. New York: John Wiley and Sons, 2001: 302.
27 KIM J H, KIM S H, KWAK Y K Development of a piezoelectric actuator using a three-dimensional bridge-type hinge mechanism[J]. Review of Scientific Instruments, 2003, 74 (5): 2918- 2924
doi: 10.1063/1.1569411
28 XU Q S, LI Y M Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier[J]. Mechanism and Machine Theory, 2016, 46 (2): 183- 200
[1] 李吉冬,钟莹,李醒飞. 磁流体动力学动量轮的致动特性和影响因素[J]. 浙江大学学报(工学版), 2021, 55(9): 1676-1683.
[2] 李伟达,王柱,张虹淼,李娟,顾洪. 床式步态康复训练系统机构设计[J]. 浙江大学学报(工学版), 2021, 55(5): 823-830.
[3] 蒋君侠,掌新辕,陶邦明,董群. 基于被动柔顺机理的电机遥操作更换机构设计和实验[J]. 浙江大学学报(工学版), 2021, 55(5): 855-865.
[4] 于勇,薛静远,戴晟,鲍强伟,赵罡. 机加零件质量预测与工艺参数优化方法[J]. 浙江大学学报(工学版), 2021, 55(3): 441-447.
[5] 李伟达,李娟,李想,张虹淼,顾洪,史逸鹏,张浩杰,孙立宁. 欠驱动异构式下肢康复机器人动力学分析及参数优化[J]. 浙江大学学报(工学版), 2021, 55(2): 222-228.
[6] 欧阳永强,张新艳. 考虑堆垛机加减速的节能自动立库设计[J]. 浙江大学学报(工学版), 2019, 53(9): 1681-1688.
[7] 陆亮,夏飞燕,訚耀保,原佳阳,郭生荣. 小球式旋转直驱压力伺服阀卡滞机理研究[J]. 浙江大学学报(工学版), 2019, 53(7): 1265-1273.
[8] 费飞,刘申宇,吴常铖,杨德华,周升丽. 基于磁悬浮结构的人体动能采集技术[J]. 浙江大学学报(工学版), 2019, 53(11): 2215-2222.
[9] 杨晓钧, 舒淦, 李兵. 含柔顺关节的空间RSSP常力机构建模与分析[J]. 浙江大学学报(工学版), 2018, 52(2): 261-267.
[10] 吴新忠, 邢强, 陈明, 成江洋, 杨春雨. 采用改进互补集总经验模态分解的电能质量扰动检测方法[J]. 浙江大学学报(工学版), 2017, 51(9): 1834-1843.
[11] 刘凯, 曹毅, 周睿, 葛姝翌, 丁锐. 一移两转平板折展柔性铰链的建模及优化[J]. 浙江大学学报(工学版), 2017, 51(12): 2399-2407.
[12] 曲巍崴, 石鑫, 董辉跃, 封璞加, 朱灵盛, 柯映林. 气动锤铆过程仿真分析与试验[J]. 浙江大学学报(工学版), 2014, 48(8): 1411-1418.
[13] 孙晓燕, 姚晨纯, 王海龙, 张治成. 基于3D有限元的FRP筋夹片式锚具参数影响分析[J]. 浙江大学学报(工学版), 2014, 48(6): 1058-1067.
[14] 孙跃, 赵志斌, 苏玉刚, 唐春森. 非接触电能传输系统参数非线性规划[J]. J4, 2013, 47(2): 353-360.
[15] 张雷, 邬义杰, 王彬, 刘孝亮. 基于正交建模的空间柔顺构件多目标优化[J]. J4, 2012, 46(8): 1419-1423.