Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (2): 261-267    DOI: 10.3785/j.issn.1008-973X.2018.02.008
机械与动力工程     
含柔顺关节的空间RSSP常力机构建模与分析
杨晓钧, 舒淦, 李兵
哈尔滨工业大学深圳研究生院 机电工程与自动化学院, 广东 深圳, 518055
Modeling and analysis of spatial RSSP constant-force mechanism with compliant joints
YANG Xiao-jun, SHU-gan, LI-bing
Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen Graduate School, ShenZhen, 518055
 全文: PDF(3526 KB)   HTML
摘要:

为了解决机构在一定输入范围内需要输出常力的问题,提出在一般初始位形下,空间曲柄滑块机构(RSSP)空间柔顺常力机构的建模与参数优化方法.建立机构柔顺关节的变形量与机构无量纲几何参数的关系.运用虚功原理,建立机构输出端与外部环境接触力与柔顺关节的扭矩的力学模型.以接触力采样点相邻差值和的方法表征接触力波动特征的大小,建立起表征接触力波动的目标函数.优化得出一般初始位形下的空间柔顺常力机构的无量纲化结构参数.设计出实验装置,测得实际输出接触力.结果表明,实际接触力围绕着理论接触常力在5%以内波动.

Abstract:

A novel modeling and parameter optimization method was proposed for spatial crank slider mechanism(RSSF) spatial compliant constant-force mechanism (CCFM) with arbitrary initial configuration in order to solve the problem of a mechanism that is needed to produce a constant output force for a range of input displacements. The relationship between the deflections of the complaint joints and the dimensionless parameters of the CCFM was obtained. The mechanical model was constructed which consisted of the contact force of the output of CCFM and the torques of the compliant joints. The propagation of the contact force was represented by the sum of the difference of the adjacent sampling contact forces; A cost function which was built represented the propagation of the contact force. The dimensionless parameters were determined by the optimization method under the arbitrary initial configuration of CCFM. The experimental device was designed. The experimental results show that the measurement magnitude of contact force fluctuates within the 5% about the theoretical magnitude.

收稿日期: 2016-12-15 出版日期: 2018-03-09
CLC:  TH112  
基金资助:

广东省科技计划资助项目(2016A010102004).

作者简介: 杨晓钧(1977-),男,副教授,从事机器人机构学方面等研究.orcid.org/0000-0002-0637-8253E-mail:yangxiaojun@hit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

杨晓钧, 舒淦, 李兵. 含柔顺关节的空间RSSP常力机构建模与分析[J]. 浙江大学学报(工学版), 2018, 52(2): 261-267.

YANG Xiao-jun, SHU-gan, LI-bing. Modeling and analysis of spatial RSSP constant-force mechanism with compliant joints. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 261-267.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.02.008        http://www.zjujournals.com/eng/CN/Y2018/V52/I2/261

[1] 赵文宏. 纳米级超精密抛光机控制系统研制[D]. 杭州:浙江大学, 2003. ZhAO Wen-hong. Development of the control system for nano-scale ultra precision polishing machine[D]. Hangzhou:Zhejiang University, 2003.
[2] 史素敏. 模具抛光柔顺执行机构的接触力控制研究[D]. 成都:西华大学, 2013. SHI Su-min. Research on contact force control of compliant actuator for mold polishing[D]. Chengdu:Xihua University, 2013.
[3] 王新涛. 复杂曲面研磨抛光机器人力控制研究[D]. 沈阳:东北大学, 2012. WANG Xin-tao. Research of force control of a grinding and polishing robot based on complex curved surface[D].. Shenyang:Northeastern University, 2012.
[4] BOYLEC L. A closed-form dynamic model of the compliant constant force mechanism using the pseudo-rigid-body model[D]. Provo:Brigham Young University, USA, 2001.
[5] MIDHA A, MURPHY M D, HOWELL L L. Compliant constant-force mechanism and devices formed therewith:United States, US5649454[P]. 1997.
[6] PEDERSEN C B W, FLECK N A, ANANTHASURESH G K. Design of a compliant mechanism to modify an actuator characteristic to deliver a constant output force[J]. Journal of Mechanical Design, 2006, 128(5):1101-1112.
[7] MEADERS J C, MATTSON C A. Optimization of near-constant force springs subject to mating uncertainty[J]. Structural & Multidisciplinary Optimization,2009, 41(1):1-15.
[8] RAHMAN M U, ZHOU H.Design of constant force compliant mechanisms[J]. International Journal of Engineering Research and Technology, 2014, 3(7):14-19.
[9] LAN C C, WANG J H, CHENY H. A compliant constant-force mechanism for adaptive robot end-effector operations[C]//Robotics and Automation (ICRA), IEEE International Conference on.Anchorage, AK, USA:[s. n.], 2010:2131-2136.
[10] CHEN Y H, LAN C C. An adjustable constant-force mechanism for adaptive end-effector operations[J]. Journal of Mechanical Design, 2012, 134(3):031005.
[11] PRAKASHAH H N, ZHOU H. Synthesis of constant torque compliant mechanisms[J]. Journal of Mechanisms and Robotics, 2016, 8:064503-1.
[12] TANIK E, PARLAKTA? V. A new type of compliant spatial four-bar (RSSR) mechanism[J]. Mechanism and Machine Theory, 2011, 46(5):593-606.
[13] PARLAKTA? V, TANIK E. Partially compliant spatial slider-crank (RSSP) mechanism[J]. Mechanism and Machine Theory,2011, 46(11):1707-1718.
[14] PARLAKTA? V. Spatial compliant constant-force mechanism[J]. Mechanism and Machine Theory, 2013, 67:152-165.
[15] PARLAKTA? V, TANIK E.Single piece compliant spatial slider-crank mechanism[J]. Mechanism and Machine Theory, 2014, 81:1-10.

No related articles found!