Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (5): 855-865    DOI: 10.3785/j.issn.1008-973X.2021.05.006
机械工程     
基于被动柔顺机理的电机遥操作更换机构设计和实验
蒋君侠(),掌新辕,陶邦明,董群
浙江大学 机械工程学院,浙江 杭州 310027
Design and experiment of remote handling motor replacement device based on passive compliant mechanism
Jun-xia JIANG(),Xin-yuan ZHANG,Bang-ming TAO,Qun DONG
School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2077 KB)   HTML
摘要:

核工业热室中智能装备的驱动电机受核辐射影响易损坏,采用电机遥操作更换技术是确保热室内智能装备正常运作的关键. 针对这一问题,分析电机遥操作更换设计需求,提出基于被动柔顺机理的电机遥操作更换方法;分析轴孔装配3种接触状态,建立电机垂向插配力学模型,提出动力对接策略,设计五自由度(5-DOF)空间被动柔顺机构;基于热室中遥操作机械臂的特点,设计电机遥操作更换结构和工作流程. 构建实验装置,测试统计电机更换成功率和耗时,并针对电机垂向插配力学模型所预测的插配力进行检测和理论计算比对,验证电机遥操作更换结构的可靠性和电机垂向插配力学模型的有效性. 电机遥操作更换技术能为热室中智能装备的自动维护提供技术支撑,也为机器人执行其他自动化装配任务提供借鉴.

关键词: 电机自动更换热室环境遥操作机械臂柔顺装配被动柔顺机构    
Abstract:

The power motor of intelligent equipment in hot cells of nuclear industry is prone to failure due to nuclear radiation, so the adoption of remote handling motor replacement technology is the key to the normal operation of intelligent equipment in hot cells. To solve the above problem, the design requirements of remote handling motor replacement device were analyzed, and the remote handling motor replacement method based on passive compliance was proposed. Three contact states of the shaft hole assembly were performed, and the mechanical model of motor vertical insertion was constructed. A motor docking strategy was put forward, and a five-degree of freedom (5-DOF) space passive compliant mechanism was designed. The remote handling motor replacement device structure and the remote handling replacement work flow were designed based on the characteristics of the remote operation robotic arm in hot cells. Experimental device was manufactured, and the success rate and the time-consuming of remote handling replacement were counted. In addition, the actual test value and the theoretical value of insertion force predicted by the motor vertical insertion mechanical model were compared. Results verified the reliability of the remote handling motor replacement device and the effectiveness of the motor vertical insertion mechanical model. The proposed technology provides basic technology for the automatic maintenance of intelligent equipment in hot cells, and also provides inspiration for the robot to perform other automated assembly tasks.

Key words: automatic quick-replacement motor    hot cell environment    remote operation robotic arm    compliant assembly    passive compliant mechanism
收稿日期: 2020-05-07 出版日期: 2021-06-10
CLC:  TH 122  
作者简介: 蒋君侠(1968—),男,研究员,博导,从事智能装备结构创新设计与开发、飞机数字化装配工艺装备研究. orcid.org/0000-00017920-8282. E-mail: jiangjx@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
蒋君侠
掌新辕
陶邦明
董群

引用本文:

蒋君侠,掌新辕,陶邦明,董群. 基于被动柔顺机理的电机遥操作更换机构设计和实验[J]. 浙江大学学报(工学版), 2021, 55(5): 855-865.

Jun-xia JIANG,Xin-yuan ZHANG,Bang-ming TAO,Qun DONG. Design and experiment of remote handling motor replacement device based on passive compliant mechanism. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 855-865.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.05.006        http://www.zjujournals.com/eng/CN/Y2021/V55/I5/855

图 1  2种电机连接形式
图 2  电机遥操作更换原理图
图 3  孔轴配合的4个阶段
图 4  电机遥操作更换现场示意图
图 5  动力对接原理图
图 6  动力对接过程图
图 7  柔顺装配原理图
图 8  倒角滑移状态的力学模型
图 9  一点接触状态的力学模型
图 10  两点接触状态的力学模型
图 11  5-DOF被动柔顺机构原理图
图 12  电机遥操作更换总体结构设计
图 13  柔顺机构结构图
孔轴参数 数值 装配参数 数值 实验参数 数值
2R 90 mm W 10 mm x0 4 mm
2r 89.96 mm α 1/3 rad θ0 0.05 rad
L 373 mm LMAX 50 mm μ 0.15
表 1  Matlab仿真初始参数
图 14  水平刚度对插配力的影响
图 15  旋转刚度对插配力的影响
图 16  电机组件结构图
图 17  固定组件结构图
图 18  电机遥操作更换总体示意图
图 19  导向法兰定位过程
图 20  动力对接过程
图 21  电机遥操作更换流程图
图 22  电机遥操作更换实验现场图
孔轴参数 数值 装配参数 数值 实验参数 数值
2R 90 mm W 10 mm x 0~6 mm
2r 89.96 mm α 1/3 rad θ 0~0.05 rad
L 373 mm LMAX 50 mm m0g 153 N
μ 0.15 z 0~50 mm z0 0 mm
表 2  电机遥操作更换装置的各项参数
图 23  不同误差下的成功率
图 24  实验测得的实际插配力
1 王鹏飞. 托卡马克类超冗余机械臂结构综合及入腔运动规划[D]. 上海: 上海交通大学, 2017.
WANG Peng-fei. Structure synthesis and motion planning of entering Tokamak for Tokamak-type hyper-redundant manipulator[D]. Shanghai: Shanghai Jiaotong University, 2017.
2 吴炳龙, 曲道奎, 徐方 基于力/位混合控制的工业机器人精密轴孔装配[J]. 浙江大学学报: 工学版, 2018, 52 (1): 165
WU Bing-long, QU Dao-kui, XU Fang Industrial robot high precision peg-in-hole assembly based on hybrid force/position control[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (1): 165
3 BABACI S, AMIRAT Y, PONTNAU J, et al. Fuzzy adaptation impedance of a 6-DOF parallel robot application to peg in hole insertion [C]// Proceedings of 5th IEEE International Conference on Fuzzy Systems. New Orleans: IEEE Computer Society Press, 1996: 1770-1776.
4 CHAN S P, LIAW H C Generalized impedance control of robot for assembly tasks requiring compliantmanipulation[J]. IEEE Transaction on Industrial and Electronics, 1996, 43 (4): 453- 461
doi: 10.1109/41.510636
5 JEAN J H, FU L C Adaptive hybrid control strategies for constrained robots[J]. IEEE Transactions on Automatic Control, 1993, 38 (4): 598- 603
doi: 10.1109/9.250529
6 JEON D, TOMIZUKA M Learning hybrid force and position control of robot manipulators[J]. IEEE Transactions on Robotics and Automation, 1993, 9 (4): 423- 430
doi: 10.1109/70.246053
7 IOSSIFIDIS I, SCHONER G. Dynamical systems approach for the autonomous avoidance of obstacles and joint-limits for an redundant robot arm [C]// Proceedings of the 2006 IEEE International Conference on Intelligent Robots and Systems. Beijing: IEEE, 2006: 580-585.
8 王刚, 吴广顺 机器人装配作业的主被动复合柔顺[J]. 中国机械工程, 1998, (9): 62- 64
WANG Gang, WU Guang-shun Active passive compound compliance in the robotic assembly process[J]. Chinese Journal of Mechanical Engineering, 1998, (9): 62- 64
9 李裕超. 飞机部件轴孔柔顺装配系统设计研究[D]. 杭州: 浙江大学, 2016.
LI Yu-chao. Research on peg-hole compliant assembly system of aircraft components [D]. Hangzhou: Zhejiang University, 2016.
10 彭商贤, 金佐中 机器人柔顺装配的几何及力学分析研究[J]. 机械工程学报, 1995, (6): 53- 60
PENG Shang-xian, JIN Zuo-zhong Research on geometric and mechanical analysis of robot compliant assembly[J]. Chinese Journal of Mechanical Engineering, 1995, (6): 53- 60
doi: 10.3321/j.issn:0577-6686.1995.06.015
11 DU K L, ZHANG B B, HUANG X, et al. Dynamic analysis of assembly process with passive compliance for robot manipulators[C]// Computational Intelligence in Robotics and Automation Proceedings. Kobe: IEEE, 2003: 1168-1173.
12 CHEN Y Z, XIE F G, LIU X J, et al Error modeling and sensitivity analysis of a parallel robot with SCARA (selective compliance assembly robot arm) motions[J]. Chinese Journal of Mechanical Engineering, 2014, 27 (4): 693- 702
doi: 10.3901/CJME.2014.0423.082
13 WHITNEY D E Quasi-static assembly of compliantly supported rigid parts[J]. Journal of Dynamic Systems Measurement and Control, 1982, 104 (2): 65- 77
14 费燕琼, 赵锡芳 基于凸多面体边界元的接触状态判断[J]. 机械工程学报, 2005, 41 (1): 50- 53
FEI Yan-qiong, ZHAO Xi-fang Judging assembly contact states based on boundary components of convex polyhedron[J]. Chinese Journal of Mechanical Engineering, 2005, 41 (1): 50- 53
doi: 10.3321/j.issn:0577-6686.2005.01.011
15 STURGES R, LAOWATTANA S Design of an orthogonal compliance for polygonal peg insertion[J]. Journal of Mechanical Design, 1996, 118 (3): 106- 114
16 HOGAN N Impedance control: an approach to manipulation: Part I-Theory[J]. Journal of Dynamic Systems Measurement and Control, 1985, 107: 1- 24
doi: 10.1115/1.3140702
17 SINGH H P, SUKAVANAM N Stability analysis of robust adaptive hybrid position/force controller for robot manipulators using neural network with uncertainties[J]. Neural Computing and Applications, 2012, 22 (8): 1745- 1755
doi: 10.1007%2Fs00521-012-0966-6
18 WHITNEY D E, ROURKE J Mechanical behavior and design equations for elastomer shear pad remote center compliances[J]. Journal of Dynamic Systems, Measurement, and Control, 1986, 108 (3): 223- 232
doi: 10.1115/1.3143771
19 CUTKOSKY M, WRIGHT P Active control of a compliant wrist in manufacturing tasks[J]. Journal of Manufacturing Science and Engineering, 1986, 108 (1): 36- 43
20 龚正. 面向热室的聚变堆内部器件清洗去污遥操作装置关键技术研究[D]. 合肥: 中国科学技术大学, 2016.
GONG Zheng. Research on key technologies of cleaning decontaminationremote handling equipment for fusion reactor in-vesselcomponents in hot cell[D]. Hefei: University of Science and Technology of China, 2016.
[1] 郝天泽,肖华平,刘书海,张超,马豪. 集成化智能软体机器人研究进展[J]. 浙江大学学报(工学版), 2021, 55(2): 229-243.
[2] 白大鹏,张斌,洪昊岑,李洋,季清华,杨华勇. 生物3D打印装置及打印模型形貌检测[J]. 浙江大学学报(工学版), 2021, 55(2): 289-298.
[3] 郭磊,张秀芬. 多重故障驱动的再制造并行拆卸序列规划方法[J]. 浙江大学学报(工学版), 2020, 54(11): 2233-2246.
[4] 萨日娜,张树有,裘乐淼,张利春. 基于传动可供性评价的机械系统方案设计方法[J]. 浙江大学学报(工学版), 2020, 54(11): 2179-2189.
[5] 高云凯,马超,刘哲,徐亚男. 基于畸变比能全局化策略的应力拓扑优化[J]. 浙江大学学报(工学版), 2020, 54(11): 2169-2178.
[6] 苏开远,徐志刚,朱建峰,刘维民. 基于Petri网的废旧产品拆卸设备设计[J]. 浙江大学学报(工学版), 2020, 54(9): 1795-1804.
[7] 陈浩,王新杰,王炅,席占稳,曹云. 基于克里金模型的微电热驱动器优化设计[J]. 浙江大学学报(工学版), 2020, 54(8): 1490-1496.
[8] 胡云青,邱清盈,余秀,武建伟. 基于改进三体训练法的半监督专利文本分类方法[J]. 浙江大学学报(工学版), 2020, 54(2): 331-339.
[9] 张鹏,刘晓健,张树有,裘乐淼,伊国栋. 稀疏混合不确定变量优化方法及应用[J]. 浙江大学学报(工学版), 2019, 53(3): 435-443.
[10] 李特, 芮执元, 雷春丽, 郭俊锋, 胡赤兵. 考虑气隙变化的高速电主轴热特性仿真[J]. 浙江大学学报(工学版), 2016, 50(5): 941-948.
[11] 冀瑜,邱清盈,冯培恩,黄浩. 国际专利分类表中设计知识的提取和利用[J]. 浙江大学学报(工学版), 2016, 50(3): 412-418.
[12] 吕茂印, 徐月同, 叶国云, 姚鑫骅. 基于量子行为粒子群的非对称转向机构优化[J]. 浙江大学学报(工学版), 2016, 50(2): 218-223.
[13] 陈实, 杨智渊, 孙凌云, 楼赟. 草图设计知识分析方法——结合语音能量和创意拐点[J]. 浙江大学学报(工学版), 2015, 49(11): 2073-2082.
[14] 吴晨睿, 张树有, 刘晓健. 基于群聚参数网络分析的产品方案设计评价[J]. 浙江大学学报(工学版), 2015, 49(8): 1495-1502.
[15] 陈进,庆飞,庞晓平. 基于组合挖掘的反铲液压挖掘机工作装置优化设计[J]. 浙江大学学报(工学版), 2014, 48(9): 1654-1660.