Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (2): 229-243    DOI: 10.3785/j.issn.1008-973X.2021.02.003
机械工程     
集成化智能软体机器人研究进展
郝天泽(),肖华平*(),刘书海,张超,马豪
中国石油大学(北京) 机械与储运工程学院,北京 102249
Research status of integrated intelligent soft robots
Tian-ze HAO(),Hua-ping XIAO*(),Shu-hai LIU,Chao ZHANG,Hao MA
College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China
 全文: PDF(1615 KB)   HTML
摘要:

从驱动方式、材料与制造、运动方式、传感与控制方面对集成化智能软体机器人进行综述,讨论集成化软体机器人与新型柔性传感器、机器学习之间相辅相成的关系,分析在驱动方式、建模与控制方面存在的问题. 根据驱动方式的不同,可以将集成化智能软体机器人分为流体驱动、智能材料驱动和化学反应驱动,能量来源决定软体机器人的集成方式和运动能力,而驱动方式的选用多是以仿生灵感为指导原则. 柔性传感器和机器学习作为软体机器人提高运动能力、优化控制方式的可靠工具,将推动智能软体机器人进入实际应用阶段. 实现可控和可预测自主运动能力的集成化智能软体机器人是软体机器人未来的发展方向,在运动方式上模仿动物的灵活姿态,在未知环境勘探领域有广阔应用前景.

关键词: 软体机器人集成化驱动方式仿生学智能结构    
Abstract:

Integrated intelligent soft robots were reviewed from the aspects of actuation, materials, manufacturing, modes of motion, sensing and control, and the complementary relationships between integrated intelligent soft robots, new flexible sensors and machine learning were discussed. The problems in actuation, modeling and control were also analyzed. Integrated intelligent soft robots can be divided into fluidic driven, intelligent material driven and chemical reaction driven according to different driving methods. The energy source determines the integration method and the movement ability of the soft robots, and the selection of driving methods is mostly based on bionic inspiration. Flexible sensors and machine learning, as reliable tools for soft robots to improve motion capabilities and optimize control methods, will promote integrated intelligent soft robots into practical application. As the future development direction of soft robot, integrated intelligent soft robots that realizes controllable and predictable autonomous motion capabilities imitating the flexible postures of animals have broad application prospects in field exploration.

Key words: soft robotics    integration    actuation    bionics    smart structure
收稿日期: 2020-10-16 出版日期: 2021-03-09
CLC:  TH 122  
基金资助: 国家自然科学基金资助项目(51605492,51575529);中国石油大学(北京)科学基金资助项目(2462020XKJS01)
通讯作者: 肖华平     E-mail: 2019310308@student.cup.edu.cn;hxiao@cup.edu.cn
作者简介: 郝天泽(1995—),男,博士生,从事机械制造研究. orcid.org/0000-0002-8488-9673. E-mail: 2019310308@student.cup.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
郝天泽
肖华平
刘书海
张超
马豪

引用本文:

郝天泽,肖华平,刘书海,张超,马豪. 集成化智能软体机器人研究进展[J]. 浙江大学学报(工学版), 2021, 55(2): 229-243.

Tian-ze HAO,Hua-ping XIAO,Shu-hai LIU,Chao ZHANG,Hao MA. Research status of integrated intelligent soft robots. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 229-243.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.02.003        http://www.zjujournals.com/eng/CN/Y2021/V55/I2/229

图 1  软体机器人发展历程
图 2  流体驱动软体机器人
图 3  IPMC驱动软体机器人
图 4  2种化学反应驱动原理图
图 5  集成化智能软体机器人常用材料
名称 材料 制造工艺 能量来源 运动方式
四足爬行机器人[23] 硅橡胶:Elastosil M4601,Ecoflex 0030 软光刻 微型气泵 海星:爬行
流体驱动仿生鱼[25] 硅橡胶:Mold Star 15 模具铸造法 微型液压泵 鱼:游动
仿生海星[28] 硅橡胶:Dragonskin 10;SMA 铸造法,3D打印 锂聚合物电池 海星:水下行走
仿生蛇[32] 硅橡胶 模具铸造法 微型气泵 蛇:爬行
六足行走机器人[33] 硅橡胶:Ecoflex 30 模具铸造法 微型气泵 行走
仿蛇爬行机器人[34] 硅橡胶:Ecoflex 0030 激光切割,模具铸造法 微型气泵 蛇:爬行
仿生青蛙[35] 硅橡胶:Ecoflex 0050;PDMS:Sylgard 184 模具铸造法,3D打印 高压CO2气瓶 青蛙:游动
仿生乌贼[36] 硅橡胶:Ecoflex 0030 模具铸造法,3D打印 高压CO2气瓶 乌贼:喷射前进
机械鳐鱼[43] SMA;聚氯乙烯 ? 锂聚合物电池 鳐:游动
仿生水蛇[44] SMA;聚氨酯 ? 锂聚合物电池 蛇:游动
IPMC驱动仿生鱼[45] IPMC ? 锂聚合物电池 鱼:游动
仿生蝠鲼[47] IPMC;PDMS 模具铸造法 锂聚合物电池 蝠鲼:游动
仿生魔鬼鱼[48] IPMC;PDMS 模具铸造法,3D打印 锂聚合物电池 魔鬼鱼:游动
滚动机器人[49] 硅橡胶:Ecoflex 0030 模具铸造法 过氧化氢电池 滚动
多次跳跃机器人[50] 类橡胶 3D打印 丁烷燃料电池 跳跃
Octopus[52] 硅橡胶:Ecoflex 30;PDMS:Sylgard 184 模具铸造法,软光刻,3D打印,激光切割 过氧化氢电池 章鱼:抬腿
仿生狮子鱼[53] 硅橡胶:Dragonskin 20;石墨 模具铸造法,3D打印 碘化锌电池液 鱼:游动
单次跳跃机器人[54] 硅橡胶:M4601 软光刻,3D打印 丁烷燃料电池 跳跃
机械鳗鱼[68] 硅橡胶:Ecoflex 0030,Dragon Skin 0010 软光刻,3D打印 齿轮泵 游动
SMA四足机器人[69] SMA、导热弹性体 ? 锂聚合物电池 跑动
介电弹性体驱动鳐鱼[70] PDMS:Sylgard 184;水凝胶 模具铸造法 介电弹性体 鳐:游动
仿生蚯蚓[71] SMA、聚醚醚酮树脂 ? 锂聚合物电池 蚯蚓:蠕动
DE驱动乌贼[72] 介电弹性体 ? 锂聚合物电池 乌贼:喷射前进
表 1  集成化智能软体机器人材料、制造、能量来源及运动方式总结
图 6  仿生鱼尾铸造过程[25]
图 7  多层软光刻制造过程[76]
图 8  Octopus制作流程[52]
图 9  陆地生物仿生软体机器人
图 10  水生生物仿生软体机器人
图 11  基于传统传感器的控制系统
1 王成军, 李帅 软体机器人研究现状[J]. 微纳电子技术, 2019, 56 (12): 948- 955
WANG Cheng-jun, LI Shuai Research status of soft robots[J]. Micronanoelectronic Technology, 2019, 56 (12): 948- 955
2 MARTINEZ R V, FISH C R, CHEN X, et al Elastomeric origami: programmable paper: elastomer composites as pneumatic actuators[J]. Advanced Functional Materials, 2012, 22 (7): 1376- 1384
doi: 10.1002/adfm.201102978
3 TRIVEDI D, RAHN C D, KIER W M, et al Soft robotics: biological inspiration, state of the art, and future research[J]. Applied Bionics and Biomechanics, 2008, 5 (3): 99- 117
doi: 10.1155/2008/520417
4 BAER J I. Material handling apparatus and the like: US3343864 [P]. 1967–09–26.
5 ROY L O, KENT O. Gripping device: US3601442 [P]. 1971–08-24.
6 SUZUMORI K, ⅡKURA S, TANAKA H. Development of flexible microactuator and its applications to robotic mechanisms [C]// 1991 IEEE International Conference on Robotics and Automation. California: IEEE, 1991: 1622-1627.
7 KOHICHI S. Gripping actuator with independently flexible cylinders: US5156081 [P]. 1992–10-20.
8 YAMAGUCHI A, TAKEMURA K, YOKOTA S, et al A robot hand using electro-conjugate fluid: grasping experiment with balloon actuators inducing a palm motion of robot hand[J]. Sensors and Actuators A: Physical, 2012, 174: 181- 188
doi: 10.1016/j.sna.2011.11.036
9 NⅡYAMA R, SUN X, SUNG C, et al Pouch motors: printable soft actuators integrated with computational design[J]. Soft Robotics, 2015, 2 (2): 59- 70
doi: 10.1089/soro.2014.0023
10 DEIMEL R, BROCK O. A compliant hand based on a novel pneumatic actuator [C]// IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE, 2013: 2047-2053.
11 ZHANG N, GE L, XU H, et al 3D printed, modularized rigid-flexible integrated soft finger actuators for anthropomorphic hands[J]. Sensors and Actuators A: Physical, 2020, 312: 1- 9
12 DEIMEL R, BROCK O A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. International Journal of Robotics Research, 2016, 35 (1–3): 161- 185
doi: 10.1177/0278364915592961
13 SHEPHERD R F, ILIEVSKI F, CHOI W, et al Multigait soft robot[J]. Proceedings of the National Academy of Sciences, 2011, 108 (51): 20400- 20403
doi: 10.1073/pnas.1116564108
14 ISHIDA M, DROTMAN D, SHIH B, et al Morphing structure for changing hydrodynamic characteristics of a soft underwater walking robot[J]. IEEE Robotics and Automation Letters, 2019, 4 (4): 4163- 4169
doi: 10.1109/LRA.2019.2931263
15 TAKUYA U, MASAHIRO S, YOSHIHIRO K Caterpillar-inspired crawling robot using both compression and bending deformations[J]. IEEE Robotics and Automation Letters, 2019, 4 (2): 670- 676
16 GU G, ZOU J, ZHAO R, et al Soft wall-climbing robots[J]. Science Robotics, 2018, 3 (25): 1- 12
17 SINGH G, KRISHNAN G Designing fiber-reinforced soft actuators for planar curvilinear shape matching[J]. Soft Robotics, 2020, 7 (1): 109- 121
doi: 10.1089/soro.2018.0169
18 LIAO B, ZANG H, CHEN M, et al Soft rod-climbing robot inspired by winding locomotion of snake[J]. Soft Robotics, 2020, 7 (4): 500- 511
doi: 10.1089/soro.2019.0070
19 LIN H, LEISK G G, TRIMMER B GoQBot: a caterpillar-inspired soft-bodied rolling robot[J]. Bioinspiration and Biomimetics, 2011, 6 (2): 26007
doi: 10.1088/1748-3182/6/2/026007
20 TANG Y, CHI Y, SUN J, et al Leveraging elastic instabilities for amplified performance: spine-inspired high-speed and high-force soft robots[J]. Science Advances, 2020, 6 (19): z6912
doi: 10.1126/sciadv.aaz6912
21 XIE Z, DOMEL A G, AN N, et al Octopus arm-inspired tapered soft actuators with suckers for improved grasping[J]. Soft Robotics, 2020, 7 (5): 639- 648
doi: 10.1089/soro.2019.0082
22 SHEN Z, ZHONG H, XU E, et al An underwater robotic manipulator with soft bladders and compact depth-independent actuation[J]. Soft Robotics, 2020, 7 (5): 535- 549
doi: 10.1089/soro.2019.0087
23 TOLLEY M T, SHEPHERD R F, MOSADEGH B, et al A resilient, untethered soft robot[J]. Soft Robotics, 2014, 1 (3): 213- 223
doi: 10.1089/soro.2014.0008
24 MORIN S A, SHEPHERD R F, KWOK S W, et al Camouflage and display for soft machines[J]. Science, 2012, 337 (6096): 828- 832
doi: 10.1126/science.1222149
25 KATZSCHMANN R K, DELPRETO J, MACCURDY R, et al Exploration of underwater life with an acoustically controlled soft robotic fish[J]. Science Robotics, 2018, 3 (16): eaar3449
doi: 10.1126/scirobotics.aar3449
26 MARCHESE A D, ONAL C D, RUS D Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators[J]. Soft Robotics, 2014, 1 (1): 75- 87
doi: 10.1089/soro.2013.0009
27 KATZSCHMANN R K, MARCHESE A D, RUS D. Hydraulic autonomous soft robotic fish for 3D swimming [C]// International Symposium on Experimental Robotics. Tokyo: ISER, 2016: 405-420.
28 PATTERSON Z J, SABELHAUS A P, CHIN K, et al. An untethered brittle star robot for closed-loop underwater locomotion [EB/OL]. [2020–3–30]. https://arxiv.org/abs/2003.13529v1.
29 张忠强, 邹娇, 丁建宁, 等 软体机器人驱动研究现状[J]. 机器人, 2018, 40 (5): 648- 659
ZHANG Zhong-qiang, ZOU Jiao, DING Jian-ning, et al Research status of the soft robot driving[J]. Robot, 2018, 40 (5): 648- 659
30 费燕琼, 庞武, 于文博 气压驱动软体机器人运动研究[J]. 机械工程学报, 2017, 53 (13): 14- 18
FEI Yan-qiong, PANG Wu, YU Wen-bo Movement of air-driven soft robot[J]. Journal of Mechanical Engineering, 2017, 53 (13): 14- 18
doi: 10.3901/JME.2017.13.014
31 BENJAMIN G, DOMINIEK R, SATOSHI K , et al Elastic inflatable actuators for soft robotic applications[J]. Advanced Materials, 2017, 29 (43): 1604977
32 ONAL C D, RUS D Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot[J]. Bioinspiration and Biomimetics, 2013, 8 (2): 26003
doi: 10.1088/1748-3182/8/2/026003
33 WAYNELOVICH J, FREY T, BALJON A, et al Versatile and dexterous soft robotic leg system for untethered operations[J]. Soft Robotics, 2016, 3 (2): 64- 70
doi: 10.1089/soro.2016.0001
34 RAFSANJANI A, ZHANG Y, LIU B, et al Kirigami skins make a simple soft actuator crawl[J]. Science Robotics, 2018, 3 (15): 7555
doi: 10.1126/scirobotics.aar7555
35 FAN J, WANG S, YU Q, et al Swimming performance of the frog-inspired soft robot[J]. Soft Robotics, 2020, 7 (5): 615- 626
doi: 10.1089/soro.2019.0094
36 HOU T G, YANG X B, WANG T M, et al Locomotor transition: how squid jet from water to air[J]. Bioinspiration and Biomimetics, 2020, 15 (3): 36014
doi: 10.1088/1748-3190/ab784b
37 HOU T, YANG X, SU H, et al. Design, fabrication and morphing mechanism of soft fins and arms of a squid-like aquatic-aerial vehicle with morphology trade off [C]// International Conference on Robotics and Biomimetics. Dali: IEEE, 2019: 1020-1026.
38 李海利, 姚建涛, 周盼, 等 无系留大负载软体抓持机器人研究发展综述[J]. 机械工程学报, 2020, 56 (19): 28- 42
LI Hai-li, YAO Jian-tao, ZHOU Pan, et al Untethered, high-load soft gripping robots: a review[J]. Journal of Mechanical Engineering, 2020, 56 (19): 28- 42
doi: 10.3901/JME.2020.19.028
39 THOMAS M, ERIC M, CATHERINE E, et al 3D printed self-adhesive PEGDA-PAA hydrogels as modular components for soft actuators and microfluidics[J]. Polymer Chemistry, 2019, 10 (16): 2015- 2028
doi: 10.1039/C9PY00211A
40 CANGIALOSI A, YOON C K, LIU J, et al DNA sequence-directed shape change of photopatterned hydro gels via high-degree swelling[J]. Science, 2017, 357 (6356): 1126- 1130
doi: 10.1126/science.aan3925
41 ZHAO J W, ZHANG J M, DAVID M, et al Soft and fast hopping-running robot with speed of six times its body length per second[J]. Soft Robotics, 2019, 6 (6): 713- 721
doi: 10.1089/soro.2018.0098
42 李铁风, 李国瑞, 梁艺鸣, 等 软体机器人结构机理与驱动材料研究综述[J]. 力学学报, 2016, 48 (4): 756- 766
LI Tie-feng, LI Guo-rui, LIANG Yi-ming, et al Rebiew of materials and structures in soft robotics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48 (4): 756- 766
doi: 10.6052/0459-1879-16-159
43 WANG Z, WANG Y, LI J, et al. A micro biomimetic manta ray robot fish actuated by SMA [C]// International Conference on Robotics and Biomimetics. Guilin: IEEE, 2009: 1809-1813.
44 LOW K H, YANG J, PATTATHIL A P, et al. Initial prototype design and investigation of an undulating body by SMA [C]// International Conference on Automation Science and Engineering. Shanghai: IEEE, 2006: 472-477.
45 AURELI M, KOPMAN V, PORFIRI M Free-locomotion of underwater vehicles actuated by ionic polymer metal composites[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15 (4): 603- 614
doi: 10.1109/TMECH.2009.2030887
46 KAMAMICHI N, YAMAKITA M, ASAKA K, et al. A snake-like swimming robot using IPMC actuator/sensor [C]// International Conference on Robotics and Automation. Orlando: IEEE, 2006: 1812-1817.
47 CHEN Z, UM T I, BART-SMITH H. Ionic polymer-metal composite enabled robotic manta ray [C]// Proceedings of Spie the International Society for Optical Engineering. San Diego: IEEE, 2011: 1-12.
48 CHEN Z, UM T I, ZHU J, et al. Bio-inspired robotic cownose ray propelled by electroactive polymer pectoral fin [C]// International Mechanical Engineering Congress and Exposition. Denver: ASME, 2011: 1-8.
49 ONAL C D, CHEN X, WHITESIDES G M, et al. Soft mobile robots with on-board chemical Pressure generation [C]// Robotics Research: The 15th International Symposium ISRR. Flagstaff: Springer, 2017: 525-540.
50 BARTLETT N W, TOLLEY M T, OVERVELDE J T, et al A 3D-printed, functionally graded soft robot powered by combustion[J]. Science, 2015, 349 (6244): 161- 165
doi: 10.1126/science.aab0129
51 SHEPHERD R F, STOKES A A, FREAKE J, et al Using explosions to power a soft robot[J]. Angewandte Chemie-International Edition, 2013, 52 (10): 2892- 2896
doi: 10.1002/anie.201209540
52 WEHNER M, TRUBY R L, FITZGERALD D J, et al An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536 (7617): 451- 455
doi: 10.1038/nature19100
53 AUBIN C A, CHOUDHURY S, JERCH R, et al Electrolytic vascular systems for energy-dense robots[J]. Nature, 2019, 571 (7763): 51- 57
doi: 10.1038/s41586-019-1313-1
54 LOEPFE M, SCHUMACHER C M, LUSTENBERGER U B, et al An untethered, jumping roly-poly soft robot driven by combustion[J]. Soft Robotics, 2015, 2 (1): 33- 41
doi: 10.1089/soro.2014.0021
55 MICHAEL T T, ROBERT F S, MICHAEL K, et al. An untethered jumping soft robot [C]// International Conference on Intelligent Robots and Systems. Chicago: IEEE, 2014: 564-566.
56 孙沂琳, 张秋菊, 陈宵燕 软体驱动器研究综述[J]. 机械设计, 2019, 36 (2): 5- 18
SUN Yi-lin, ZHANG Qiu-ju, CHEN Xiao-yan Overview of soft-bodied actuators[J]. Journal of Machine Design, 2019, 36 (2): 5- 18
57 YUK H, LIN S, MA C, et al Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water[J]. Nature Communications, 2017, 8 (1): 1- 12
doi: 10.1038/s41467-016-0009-6
58 ACOME E, MITCHELL S K, MORRISSEY T G, et al Hydraulically amplified self-healing electrostatic actuators with muscle-like performance[J]. Science, 2018, 359 (6371): 61- 65
doi: 10.1126/science.aao6139
59 李海, 观姗姗, 赵树高 介电弹性体智能材料的研究进展[J]. 特种橡胶制品, 2016, 37 (2): 66- 72
LI Hai, GUAN Shan-shan, ZHAO Shu-gao Research progress of dielectric elastomer smart materials[J]. Special Purpose Rubber Products, 2016, 37 (2): 66- 72
60 PEELE B, WALLIN T, ZHAO H, et al 3D printing antagonistic systems of artificial muscle using projection stereolithography[J]. Bioinspiration and Biomimetics, 2015, 10 (5): 55003
doi: 10.1088/1748-3190/10/5/055003
61 MCMAHAN W, CHITRAKARAN V, CSENCSITS M, et al. Field trials and testing of the OctArm continuum manipulator [C]// International Conference on Robotics and Automation. Orlando: IEEE, 2006.
62 FEI Y, WANG J, PANG W A novel fabric-based versatile and stiffness-tunable soft gripper integrating soft pneumatic fingers and wrist[J]. Soft Robotics, 2019, 6 (1): 1- 20
doi: 10.1089/soro.2018.0015
63 GALLOWAY K, BECKER K, PHILLIPS B, et al Soft robotic grippers for biological sampling on deep reefs[J]. Soft Robotics, 2016, 3 (1): 23- 33
doi: 10.1089/soro.2015.0019
64 GALLOWAY K, POLYGERINOS P, WALSH C, et al. Mechanically programmable bend radius for fiber-reinforced soft actuators [C]// International Conference on Advanced Robotics. Montevideo: IEEE, 2013: 1-6.
65 POLYGERINOS P, WANG Z, OVERVELDE J T B, et al Modeling of soft fiber-reinforced bending actuators[J]. IEEE Transactions on Robotics, 2015, 31 (3): 778- 789
doi: 10.1109/TRO.2015.2428504
66 PAEZ L, AGARWAL G, PAIK J Design and analysis of a soft pneumatic actuator with origami shell reinforcement[J]. Soft Robotics, 2016, 3 (3): 109- 119
doi: 10.1089/soro.2016.0023
67 QIN L, LIANG X, HUANG H, et al A versatile soft crawling robot with rapid locomotion[J]. Soft Robotics, 2019, 6 (4): 455- 467
doi: 10.1089/soro.2018.0124
68 FENG H, SUN Y, TODD P A, et al Body wave generation for anguilliform locomotion using a fiber-reinforced soft fluidic elastomer actuator array toward the development of the eel-inspired underwater soft robot[J]. Soft Robotics, 2020, 7 (2): 233- 250
doi: 10.1089/soro.2019.0054
69 HUANG X, KUMAR K, JAWED M K, et al Chasing biomimetic locomotion speeds: creating untethered soft robots with shape memory alloy actuators[J]. Science Robotics, 2018, 3 (25): 1- 3
70 LI T, LI G, LIANG Y, et al Fast-moving soft electronic fish[J]. Science Advance, 2017, 3 (4): e1602045
71 SEOK S, ONAL C D, CHO K, et al Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18 (5): 1485- 1497
doi: 10.1109/TMECH.2012.2204070
72 YANG T, XIAO Y H, ZHANG Z, et al A soft artificial muscle driven robot with reinforcement learning[J]. Scientific Reports, 2018, 8 (1): 14518
doi: 10.1038/s41598-018-32757-9
73 王海涛, 彭熙凤, 林本末 软体机器人研究进展[J]. 华南理工大学学报:自然科学版, 2020, 48 (2): 94- 106
Wang Hai-tao, Peng Xi-feng, LIN Ben-mo Research development of soft robots[J]. Journal of South China University of Technology: Natural Science Edition, 2020, 48 (2): 94- 106
74 SIFERT E, REYSSAT E, BICO J, et al Bio-inspired pneumatic shape-morphing elastomers[J]. Nature Materials, 2019, 18 (1): 24- 28
doi: 10.1038/s41563-018-0219-x
75 SHAHID Z, GLATMAN A L, RYU S C Design of a soft composite finger with adjustable joint stiffness[J]. Soft Robotics, 2019, 6 (6): 722- 732
doi: 10.1089/soro.2018.0148
76 RANZANI T, RUSSO S, BARTLETT N W, et al Increasing the dimensionality of soft microstructures through injection-induced self-folding[J]. Advanced Materials, 2018, 30 (38): 1802739
doi: 10.1002/adma.201802739
77 MARCHESE A D, KATZSCHMANN R K, RUS D A recipe for soft fluidic elastomer robots[J]. Soft Robotics, 2015, 2 (1): 7- 25
doi: 10.1089/soro.2014.0022
78 WALLIN T J, PIKUL J, SHEPHERD R F 3D printing of soft robotic systems[J]. Nature Reviews Materials, 2018, 3 (6): 84- 100
doi: 10.1038/s41578-018-0002-2
79 CHEN W, XIONG C, LIU C, et al Fabrication and dynamic modeling of bidirectional bending soft actuator integrated with optical waveguide curvature sensor[J]. Soft Robotics, 2019, 6 (4): 495- 506
doi: 10.1089/soro.2018.0061
80 YAP H K, NG H Y, YEOW C High-force soft printable pneumatics for soft robotic applications[J]. Soft Robotics, 2016, 3 (3): 144- 158
doi: 10.1089/soro.2016.0030
81 KONISHI S. Small, soft, safe micromachine for minimally invasive surgery [C]// International Meeting for Future of Electron Devices. Osaka: IEEE, 2011: 20-21.
82 ZHANG B, FAN Y, YANG P, et al Worm-like soft robot for complicated tubular environments[J]. Soft Robotics, 2019, 6 (3): 399- 413
doi: 10.1089/soro.2018.0088
83 DOLLAR A M, HOWE R D A robust compliant grasper via shape deposition manufacturing[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11 (2): 154- 161
doi: 10.1109/TMECH.2006.871090
84 CHAM J G, BAILEY S A, CLARK J E, et al Fast and robust: hexapedal robots via shape deposition manufacturing[J]. The International Journal of Robotics Research, 2002, 21 (10): 869- 882
doi: 10.1177/0278364902021010837
85 BAILEY S A, CHAM J G, CUTKOSKY M R, et al. Biomimetic robotic mechanisms via shape deposition manufacturing [C]// The 9th International Symposium of Robotics Research. SNOWBIRD: IEEE, 1999: 1-7.
86 MAJIDI C Soft robotics: a perspective: current trends and prospects for the future[J]. Soft Robotics, 2014, 1 (1): 5- 11
doi: 10.1089/soro.2013.0001
87 CHU W, LEE K, SONG S, et al Review of biomimetic underwater robots using smart actuators[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13 (7): 1281- 1292
doi: 10.1007/s12541-012-0171-7
88 YU J, WANG M, DONG H, et al Motion control and motion coordination of bionic robotic fish: a review[J]. Journal of Bionic Engineering, 2018, 15 (4): 579- 598
doi: 10.1007/s42235-018-0048-2
89 RUS D, TOLLEY M T Design, fabrication and control of soft robots[J]. Nature, 2015, 521 (7553): 467- 475
doi: 10.1038/nature14543
90 JUNGHWAN B, YOONTAEK L, JAEYOUNG Y, et al Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots[J]. Science Robotics, 2018, 3 (18): 9020
doi: 10.1126/scirobotics.aas9020
91 PEDRO P, SYDNEY S, MATEI C Data-driven super-resolution on a tactile dome[J]. IEEE Robotics and Automation Letters, 2018, 3 (3): 1434- 1441
doi: 10.1109/LRA.2018.2800081
92 CHRIS L, JOSEF S, ROSS K, et al A deformable interface for human touch recognition using stretchable carbon nanotube dielectric elastomer sensors and deep neural networks[J]. Soft Robotics, 2019, 6 (5): 611- 620
doi: 10.1089/soro.2018.0086
93 SUBRAMANIAN S, PETR K, Li U Z, et al Learning the signatures of the human grasp using a scalable tactile glove[J]. Nature, 2019, 569 (7758): 698- 702
doi: 10.1038/s41586-019-1234-z
94 徐丰羽, 孟凡昌, 范保杰, 等 软体机器人驱动、建模与应用研究综述[J]. 南京邮电大学学报:自然科学版, 2019, 39 (3): 64- 75
XU Feng-yu, MENG Fan-chang, FAN Bao-jie, et al Review of driving methods, modeling and application in soft robots[J]. Journal of Nanjing University of Posts and Telecommunications: Natural Science, 2019, 39 (3): 64- 75
95 WEBSTER R J, JONES B A Design and kinematic modeling of constant curvature continuum robots: a review[J]. The International Journal of Robotics Research, 2010, 29 (13): 1661- 1683
doi: 10.1177/0278364910368147
96 BOSWORTH W, KIM S, HOGAN N. The MIT super mini cheetah: a small, low-cost quadrupedal Robot for dynamic locomotion [C]// International Symposium on Safety, Security, and Rescue Robotics. West Lafayette: IEEE, 2015: 1-8.
97 POLYGERINOS P, GALLOWAY K C, SANAN S, et al. EMG controlled soft robotic glove for assistance during activities of daily living [C]// International Conference on Rehabilitation Robotics. Singapore: IEEE, 2015: 55-60.
98 HAWKES E W, BLUMENSCHEIN L H, GREER J D, et al A soft robot that navigates its environment through growth[J]. Science Robotics, 2017, 2 (8): eaan3028
doi: 10.1126/scirobotics.aan3028
99 POLYGERINOS P, GALLOWAY K C, SAVAGE E, et al. Soft robotic glove for hand rehabilitation and task specific training [C]// International Conference on Robotics and Automation. Seattle: IEEE, 2015: 2913-2919.
100 POLYGERINOS P, WANG Z, GALLOWAY K C, et al Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robotics and Autonomous Systems, 2015, 73: 135- 143
doi: 10.1016/j.robot.2014.08.014
101 ZHAO H, JALVING J, HUANG R, et al A helping hand: soft orthosis with integrated optical strain sensors and emg control[J]. IEEE Robotics and Automation Magazine, 2016, 23 (3): 55- 64
doi: 10.1109/MRA.2016.2582216
102 CHEN G, PHAM M T, REDARCE T Sensor-based guidance control of a continuum robot for a semi-autonomous colonoscopy[J]. Robotics and Autonomous Systems, 2009, 57 (6/7): 712- 722
[1] 郝天泽,肖华平,刘书海,谷建峰. 形状记忆聚合物在4D打印技术下的研究及应用[J]. 浙江大学学报(工学版), 2020, 54(1): 1-16.
[2] 程华强,罗尧治,许贤. 自适应张弦梁结构的非线性内力控制[J]. 浙江大学学报(工学版), 2014, 48(7): 1155-1161.
[3] 林兰芬 高鹏 蔡铭 楼轶超 吴健 董金祥. 集成环境下产品建模技术的研究[J]. J4, 2005, 39(8): 1168-1173.